938 resultados para Saline water conversion plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O consumo de águas salinas pelas plantas na maioria dos casos afetam o rendimento das culturas em suas diversas fases prejudicando desenvolvimento e produção. O trabalho avaliou o consumo hídrico da rúcula (Eruca sativa) em sistema hidropônico NFT com águas salinas. Foram analisados seis níveis crescentes de salinidade da água (CEa), quais sejam: 0,2; 1,2; 2,2; 3,2; 4,2 e 5,2 (dS m-1) utilizaram-se duas fontes de sais: águas salobras (AS) e NaCl. Foi determinado o volume evapotranspirado por planta (VETc) no sistema durante o cultivo. O consumo hídrico nos primeiros dias após transplantio foi de 250 mL dia-1 aproximadamente para ambas as testemunhas e decresceram com o aumento da salinidade, a eficiência de utilização da água foi reduzida revelando uma resposta linear decrescente em função da salinidade ocorrendo uma resposta negativa das plantas que apresentaram uma redução na quantidade de folhas de 3,34%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was conducted in a greenhouse from May 1 to July 31, 2008, in Areia county, Paraiba State, PB, Brazil, in order to evaluate the effects of irrigation water salinity on initial growth of the passionfruit seedlings in non-saline substrate with and without bovine biofertilizer. The treatments were distributed in a completely randomized design, with three replications and twelve plants per plots, in a factorial arrangement 5 × 2 × 2, corresponding the former to the levels of salinity in the irrigation water: 0.5; 1.0; 2.0; 3.0 and 4.0 dS m-1, in soils with and without bovine biofertilizer applied at two moments (25 and 65 days after seedling emergence). The growth of the seedlings and the soil electrical conductivity were evaluated at the end of the experiment. The biofertilizer was diluted in a low saline water at a 1:1 ratio and was applied once two days before sowing, corresponding to 10% of the substrates volume. The increase in water salinity inhibited the growth in height of plants, leaf area and root length, but always to a lesser extent in the treatments with bovine biofertilizer. The increase in electrical conductivity of the irrigation water elevated the soil salinity, independently of the addition of biofertilizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment was carried out during the period of January to July/2010, in municipality of Areia, Paraiba State, Brazil, in order to evaluate effects of the irrigation with saline water, bovine biofertilizer and drainage of the soil on water consumption and growth of neem seedlings. The experimental design was in randomized blocks using factorial 5×2×2, referring to five levels of saline water (0.5; 1.5; 3.0; 4.5; 6.0 dS nr-1) in soil without and with bovine biofertilizer and in pots without and with drainage. In plants the water consumption, growth in height, stem diameter, number of leaves, dry matter of roots, aerial part and total dry mass were evaluated and in soil the electrical conductivity of saturation extract - EC was determined. The bovine biofertilizer, after dilution in non saline water (0.49 dS nr-1) e no chlorinated water in 1:1 ratio was applied once two days before sowing, equivalent to 10% of substrate volume. Irrigation was applied daily with each water type applying volume sufficient to maintain the soil with water content at level of field capacity. From results the increase in salinity of water inhibited the water consumption by plants independently of the soil with or without bovine biofertilizer. The salinity of water in soil with and without bovine biofertilizer also reduced the growth of neem plants but with more pronounced effect in the treatments without application of organic fertilizer to soil in liquid form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salt excess in soil and water used for irrigation can cause significant loss of production and growth in cultivated plants. Among some options for reduction of negative effects of salts to plants in cultivated areas, fermented bio fertilizer has been used to grow vegetables and fruit tree irrigated with saline water. The study aimed at evaluating the behavior of the noni plant to salinity of the irrigation water in substrate with and with no bio fertilizer. Treatments were arranged in a randomized block design with four replications, using a 5 × 2 factorial arrangement. Five levels of electrical conductivity of irrigation water (0.5, 1.5, 3.0, 4.5, 6.0 dS m-1) were used in substrates with and with no bio fertilizer. Parameters were evaluated as follows: plant height, stem diameter, number of leaves, leaf area, shoot dry matter and water consumption. All evaluated variables were negatively affected by the increase in salt concentration of the irrigation water, but always with less intense effects in treatments with bio fertilizer.The bio fertilizer does not eliminate, but mitigates the negative effects of salts in noni plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O excesso de sais no solo e em águas utilizadas para irrigação podem provocar perdas significativas de crescimento e de produção em plantas cultivadas. Dentre algumas alternativas para redução dos efeitos negativos dos sais às plantas em áreas cultivadas, a utilização do biofertilizante fermentado vem sendo explorada no cultivo de hortaliças e frutíferas irrigadas com água salina. Nesse sentido, o trabalho teve como objetivo avaliar o comportamento do noni à salinidade da água de irrigação em substrato sem e com biofertilizante bovino. Os tratamentos foram distribuídos em blocos ao acaso, com quatro repetições, utilizando o arranjo fatorial 5 x 2, correspondente a cinco níveis de condutividade elétrica da água de irrigação (0,5; 1,5; 3,0; 4,5; 6,0 dS m-1), em substratos com e sem biofertilizante bovino. Foram avaliados: altura de plantas, diâmetro do caule, número de folhas, área foliar, matéria seca da parte aérea e consumo hídrico. Todas as variáveis avaliadas foram influenciadas negativamente pelo incremento de sais na água de irrigação, mas sempre com menor intensidade nos tratamentos com biofertilizante bovino. O biofertilizante não elimina, mas atenua os efeitos negativos dos sais às plantas de noni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adoption of management practices that reduce water losses is essential to conserve moisture and improve soil temperature, especially in arid and semiarid environments of the Brazilian Northeast, characterized by high evapotranspiration and the adoption of irrigation with saline water, which harms growth and yield of commercial crops. Given these factories, an experiment was conducted in Nova Floresta, Paraiba, from August 2010 to February 2011 in Oxisoil, in order to evaluate the production of bell pepper and soil moisture in grooves with side trim, and application of biofertilizer and mulch cattle. The experimental design was randomized blocks with four replications using a factorial 2 x 2 x 2 for the ground beef with and without biofertilizer, with and without residues of sisal fiber (Agave sisalana), with and without the side facing the grooves, to reduce lateral water losses by infiltration of water with polyethylene plastic film. From the results, the lining of the lateral grooves provided higher values of soil moisture, number of fruits, fruit mass, plant production and productivity, bell pepper plants. It was also found that the combination of biofertilizer and mulch the ground beef remained wetter in the first 15 cm depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet (UV) filters are widely used in the formulation of personal care products (PCPs) to prevent damage to the skin, lips, and hair caused by excessive UV radiation. Therefore, large amounts of these substances are released daily into the aquatic environment through either recreational activities or the release of domestic sewage. The concern regarding the presence of such substances in the environment and the exposure of aquatic organisms is based on their potential for bioaccumulation and their potential as endocrine disruptors. Although there are several reports regarding the occurrence and fate of UV filters in the aquatic environment, these compounds are still overlooked in tropical areas. In this study, we investigated the occurrence of the organic UV filters benzophenone-3 (BP-3), ethylhexyl salicylate (ES), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC) in six water treatment plants in various cities in Southeast Brazil over a period of 6 months to 1 year. All of the UV filters studied were detected at some time during the sampling period; however, only EHMC and BP-3 were found in quantifiable concentrations, ranging from 55 to 101 and 18 to 115 ng L(-1), respectively. Seasonal variation of BP-3 was most clearly noticed in the water treatment plant in Araraquara, São Paulo, where sampling was performed for 12 months. BP-3 was not quantifiable in winter but was quantifiable in summer. The levels of BP-3 were in the same range in raw, treated and chlorinated water, indicating that the compound was not removed by the water treatment process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] A meridional hydrographic section was made in August–September 1997 at 66°W from the coast of Venezuela to Woods Hole aboard the R/V Knorr. In this report, we concentrate on near surface measurements in the Caribbean. The data show two distinct water masses with different origins. From approximately 14°N to Puerto Rico, Caribbean Surface Water and Subtropical Under Water with their source in the North Atlantic are found, as previously observed. From Venezuela to approximately 13°N, a less saline water mass with its source in the Tropics and South Atlantic is found. Within the southern portion of the section, two different velocity patterns are observed, namely, an eastward flow with a subsurface maximum near the coast of Venezuela, and a surface intensified westward jet with Velocities of 130 cm s−1 in midbasin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More efficient water treatment technologies would decrease the water bodies’ pollution and the actual intake of water resource. The aim of this thesis is an in-depth analysis of the magnetic separation of pollutants from water by means of a continuous-flow magnetic filter subjected to a field gradient produced by permanent magnets. This technique has the potential to improve times and efficiencies of both urban wastewater treatment plants and drinking water treatment plants. It might also substitute industrial wastewater treatments. This technique combines a physico-chemical phase of adsorption and a magnetic phase of filtration, having the potential to bond magnetite with any conventional adsorbent powder. The removal of both Magnetic Activated Carbons (MACs) and zeolite-magnetite mix with the addition of a coagulant was investigated. Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. The numerical results concerning the adsorbent removals well reproduced the experimental ones obtained from two different experimental setups. In real situations the treatable flow rates are up to 90 m3/h (2000 m3/d).