975 resultados para SYNTHASE IMMUNOREACTIVITY
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC 4.1.3.18) catalyzes the first step in branchedchain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 Angstrom resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K-i of 3.3 nM blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.
Resumo:
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyses the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides, which act as potent and specific inhibitors. Mutants of the enzyme have been identified that are resistant to particular herbicides. However, the selectivity of these mutants towards various sulfonylureas and imidazolinones has not been determined systematically. Now that the structure of the yeast enzyme is known, both in the absence and presence of a bound herbicide, a detailed understanding of the molecular interactions between the enzyme and its inhibitors becomes possible. Here we construct 10 active mutants of yeast AHAS, purify the enzymes and determine their sensitivity to six sulfonylureas and three imidazolinones. An additional three active mutants were constructed with a view to increasing imidazolinone sensitivity. These three variants were purified and tested for their sensitivity to the imidazolinones only. Substantial differences are observed in the sensitivity of the 13 mutants to the various inhibitors and these differences are interpreted in terms of the structure of the herbicide-binding site on the enzyme.
Resumo:
Thymidylate synthase, as a rate-limiting step in DNA synthesis, catalyses the conversion of dUMP into dTMP using 5,10-methylenotetrahydrofolate as the methyl donor. Two polymorphisms have been described in this gene: a repeat polymorphism in the 5' promoter enhancer region (3R versus 2R) and a 6 bp deletion in the 3' unstranslated region. Both of these may affect protein levels. The present case control study was aimed at investigating the influence of these two polymorphisms on the development of colorectal cancer (CRC), as well as their potential interaction with folate, vitamin B6 and vitamin B12 intake. A total of 196 cases and 200 controls, matched for age and sex distribution, were included in the study. No association was found between CRC and the 28 bp repeat polymorphism, but it was observed that individuals with the 6 bp/del and del/del genotypes had a significantly lower risk of developing the disease (OR=0.47; 95% CI 0.30-0.72). A combined genotype (2R/2R; 6 bp/del+del/del) was also found, which was associated with an even lower risk of developing of the disease (OR=0.42; 95% CI 0.26-0.69). No significant interaction between these polymorphisms and vitamin intake was observed. These results indicate for the first time that the 6 bp/del allele might be a protective factor in the development of CRC, independent of the intake of methyl group donors.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Neural nitric oxide synthase, neuroendocrine stress response, forced swimming, nNOS KO mice, hypothalamus, adrenal gland
Resumo:
AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.
Resumo:
Dolichol-phosphate-mannose synthase catalyzes the formation of Dolichol-phosphate-mannose from Dolichol-phosphate and GDP-mannose. Analysis of the primary amino acid sequence of the yeast enzyme predicts a luminal orientation of the enzyme in the endoplasmic reticulum. We analysed the translocation of the Dolichol-phosphate-mannose synthase into dog pancreatic microsomal membranes: resistance to proteolytic attack provides evidence of its luminal orientation and asks for a reevaluation of the topology of the reaction.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.
Resumo:
Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.
Resumo:
Since the late 1970s pyrimethamine-sulfadoxine (PS; FansidarTM Hoffman-LaRoche, Basel) has been used as first line therapy for uncomplicated malaria in the Amazon basin. Unfortunately, resistance has developed over the last ten years in many regions of the Amazon and PS is no longer recommended for use in Brazil. In vitro resistance to pyrimethamine and cycloguanil (the active metabolite of proguanil) is caused by specific point mutations in Plasmodium falciparum dihydrofolate reductase (DHFR), and in vitro resistance to sulfadoxine has been associated with mutations in dihydropteroate synthase (DHPS). In association with a proguanil-sulfamethoxazole clinical trial in Brazil, we performed a nested mutation-specific polymerase chain reaction to measure the prevalence of DHFR mutations at codons 50, 51, 59, 108 and 164 and DHPS mutations at codons 436, 437, 540, 581 and 613 at three sites in the Brazilian Amazon. Samples from two isolated towns showed a high degree of homogeneity, with the DHFR Arg-50/Ile-51/Asn-108 and DHPS Gly-437/Glu-540/Gly-581 mutant genotype accounting for all infections in Peixoto de Azevedo (n = 15) and 60% of infections in Apiacás (n = 10), State of Mato Grosso. The remaining infections in Apiacás differed from this predominant genotype only by the addition of the Bolivia repeat at codon 30 and the Leu-164 mutation in DHFR. By contrast, 17 samples from Porto Velho, capital city of the State of Rondônia, with much in- and out-migration, showed a wide variety of DHFR and DHPS genotypes.