105 resultados para SVMs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spam is commonly defined as unsolicited email messages, and the goal of spam categorization is to distinguish between spam and legitimate email messages. Spam used to be considered a mere nuisance, but due to the abundant amounts of spam being sent today, it has progressed from being a nuisance to becoming a major problem. Spam filtering is able to control the problem in a variety of ways. Many researches in spam filtering has been centred on the more sophisticated classifier-related issues. Currently,  machine learning for spam classification is an important research issue at present. Support Vector Machines (SVMs) are a new learning method and achieve substantial improvements over the currently preferred methods, and behave robustly whilst tackling a variety of different learning tasks. Due to its high dimensional input, fewer irrelevant features and high accuracy, the  SVMs are more important to researchers for categorizing spam. This paper explores and identifies the use of different learning algorithms for classifying spam and legitimate messages from e-mail. A comparative analysis among the filtering techniques has also been presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data pre-processing always plays a key role in learning algorithm performance. In this research we consider data pre-processing by normalization for Support Vector Machines (SVMs). We examine the normalization affect across 112 classification problems with SVM using the rbf kernel. We observe a significant classification improvement due to normalization. Finally we suggest a rule based method to find when normalization is necessary for a specific classification problem. The best normalization method is also automatically selected by SVM itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spam is commonly known as unsolicited or unwanted email messages in the Internet causing potential threat to Internet Security. Users spend a valuable amount of time deleting spam emails. More importantly, ever increasing spam emails occupy server storage space and consume network bandwidth. Keyword-based spam email filtering strategies will eventually be less successful to model spammer behavior as the spammer constantly changes their tricks to circumvent these filters. The evasive tactics that the spammer uses are patterns and these patterns can be modeled to combat spam. This paper investigates the possibilities of modeling spammer behavioral patterns by well-known classification algorithms such as Naïve Bayesian classifier (Naive Bayes), Decision Tree Induction (DTI) and Support Vector Machines (SVMs). Preliminary experimental results demonstrate a promising detection rate of around 92%, which is considerably an enhancement of performance compared to similar spammer behavior modeling research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data in many biological problems are often compounded by imbalanced class distribution. That is, the positive examples may largely outnumbered by the negative examples. Many classification algorithms such as support vector machine (SVM) are sensitive to data with imbalanced class distribution, and result in a suboptimal classification. It is desirable to compensate the imbalance effect in model training for more accurate classification. In this study, we propose a sample subset optimization technique for classifying biological data with moderate and extremely high imbalanced class distributions. By using this optimization technique with an ensemble of SVMs, we build multiple roughly balanced SVM base classifiers, each trained on an optimized sample subset. The experimental results demonstrate that the ensemble of SVMs created by our sample subset optimization technique can achieve higher area under the ROC curve (AUC) value than popular sampling approaches such as random over-/under-sampling; SMOTE sampling, and those in widely used ensemble approaches such as bagging and boosting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigate the use of a wavelet transform-based analysis of audio tracks accompanying videos for the problem of automatic program genre detection. We compare the classification performance based on wavelet-based audio features to that using conventional features derived from Fourier and time analysis for the task of discriminating TV programs such as news, commercials, music shows, concerts, motor racing games, and animated cartoons. Three different classifiers namely the Decision Trees, SVMs, and k-Nearest Neighbours are studied to analyse the reliability of the performance of our wavelet features based approach. Further, we investigate the issue of an appropriate duration of an audio clip to be analyzed for this automatic genre determination. Our experimental results show that features derived from the wavelet transform of the audio signal can very well separate the six video genres studied. It is also found that there is no significant difference in performance with varying audio clip durations across the classifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainty is known to be a concomitant factor of almost all the real world commodities such as oil prices, stock prices, sales and demand of products. As a consequence, forecasting problems are becoming more and more challenging and ridden with uncertainty. Such uncertainties are generally quantified by statistical tools such as prediction intervals (Pis). Pis quantify the uncertainty related to forecasts by estimating the ranges of the targeted quantities. Pis generated by traditional neural network based approaches are limited by high computational burden and impractical assumptions about the distribution of the data. A novel technique for constructing high quality Pis using support vector machines (SVMs) is being proposed in this paper. The proposed technique directly estimates the upper and lower bounds of the PI in a short time and without any assumptions about the data distribution. The SVM parameters are tuned using particle swarm optimization technique by minimization of a modified Pi-based objective function. Electricity price and demand data of the Ontario electricity market is used to validate the performance of the proposed technique. Several case studies for different months indicate the superior performance of the proposed method in terms of high quality PI generation and shorter computational times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, we present different approaches for music genre classification. The proposed techniques, which are composed of a feature extraction stage followed by a classification procedure, explore both the variations of parameters used as input and the classifier architecture. Tests were carried out with three styles of music, namely blues, classical, and lounge, which are considered informally by some musicians as being “big dividers” among music genres, showing the efficacy of the proposed algorithms and establishing a relationship between the relevance of each set of parameters for each music style and each classifier. In contrast to other works, entropies and fractal dimensions are the features adopted for the classifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of the values of a number of parameters (e.g., the kernel and regularization parameters). In the current work, we propose the combination of meta-learning and search algorithms to deal with the problem of SVM parameter selection. In this combination, given a new problem to be solved, meta-learning is employed to recommend SVM parameter values based on parameter configurations that have been successfully adopted in previous similar problems. The parameter values returned by meta-learning are then used as initial search points by a search technique, which will further explore the parameter space. In this proposal, we envisioned that the initial solutions provided by meta-learning are located in good regions of the search space (i.e. they are closer to optimum solutions). Hence, the search algorithm would need to evaluate a lower number of candidate solutions when looking for an adequate solution. In this work, we investigate the combination of meta-learning with two search algorithms: Particle Swarm Optimization and Tabu Search. The implemented hybrid algorithms were used to select the values of two SVM parameters in the regression domain. These combinations were compared with the use of the search algorithms without meta-learning. The experimental results on a set of 40 regression problems showed that, on average, the proposed hybrid methods obtained lower error rates when compared to their components applied in isolation.