955 resultados para SURFACE EMG ACTIVITY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we examined patterns of leg muscle recruitment and co-activation, and the relationship between muscle recruitment and cadence, in highly trained cyclists. Electromyographic (EMG) activity of the tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus was recorded using intramuscular electrodes, at individual preferred cadence, 57.5, 77.5 and 92.5 rev.min(-1). The influence of electrode type and location on recorded EMG was also investigated using surface and dual intramuscular recordings. Muscle recruitment patterns varied from those previously reported, but there was little variation in muscle recruitment between these highly trained cyclists. The tibialis posterior, peroneus longus and soleus were recruited in a single, short burst of activity during the downstroke. The tibialis anterior and gastrocnemius lateralis were recruited in a biphasic and alternating manner. Contrary to existing hypotheses, our results indicate little co-activation between the tibialis posterior and peroneus longus. Peak EMG amplitude increased linearly with cadence and did not decrease at individual preferred cadence. There was little variation in patterns of muscle recruitment or co-activation with changes in cadence. Intramuscular electrode location had little influence on recorded EMG. There were significant differences between surface and intramuscular recordings from the tibialis anterior and gastrocnemius lateralis, which may explain differences between our findings and those of previous studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (±0.9%) of the total power prior to vibration and 29% (±13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work is to contribute to the analysis and characterization of training with whole body vibration (WBV) and the resultant neuromuscular response. WBV aims to mechanically activate muscle by eliciting stretch reflexes. Generally, surface electromyography is utilized to assess muscular response elicited by vibrations. However, EMG analysis could potentially bring to erroneous conclusions if not accurately filtered. Tiny and lightweight MEMS accelerometers were found helpful in monitoring muscle motion. Displacements were estimated integrating twice the acceleration data after gravity and small postural subject adjustments contribution removal. Results showed the relevant presence of motion artifacts on EMG recordings, the high correlation between muscle motion and EMG activity and how resonance frequencies and dumping factors depended on subject and his positioning onto the vibrating platform. Stimulations at the resonant frequency maximize muscles lengthening and in turn, muscle spindle solicitation , which may produce more muscle activation. Local mechanical stimulus characterization (Le, muscle motion analysis) could be meaningful in discovering proper muscle stimulation and may contribute to suggest appropriate and effective WBV exercise protocols. ©2009 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the validity and reliability of surface electromyography (EMG) as a new non-invasive determinant of the metabolic response to incremental exercise in elite cyclists. The relation between EMG activity and other more conventional methods for analysing the aerobic-anaerobic transition such as blood lactate measurements (lactate threshold (LT) and onset of blood lactate accumulation (OBLA)) and ventilatory parameters (ventilatory thresholds 1 and 2 (VT1 and VT2)) was studied.Twenty eight elite road cyclists (age 24 (4) years; VO2MAX 69.9 (6.4) ml/kg/min; values mean (SD)) were selected as subjects. Each of them performed a ramp protocol (starting at 0 W, with increases of 5 W every 12 seconds) on a cycle ergometer (validity study). In addition, 15 of them performed the same test twice (reliability study). During the tests, data on gas exchange and blood lactate levels were collected to determine VT1, VT2, LT, and OBLA. The root mean squares of EMG signals (rms-EMG) were recorded from both the vastus lateralis and the rectus femoris at each intensity using surface electrodes. Results - A two threshold response was detected in the rms-EMG recordings from both muscles in 90% of subjects, with two breakpoints, EMG(T1) and EMG(T2), at around 60-70% and 80-90% of VO2MAX respectively. The results of the reliability study showed no significant differences (p > 0.05) between mean values of EMG(T1) and EMG(T2) obtained in both tests. Furthermore, no significant differences (p > 0.05) existed between mean values of EMG(T1), in the vastus lateralis and rectus femoris, and VT1 and LT (62.8 (14.5) and 69.0 (6.2) and 64.6 (6.4) and 68.7 (8.2)% of VO2MAX respectively), or between mean values of EMG(T2), in the vastus lateralis and rectus femoris, and VT2 and OBLA (86.9 (9.0) and 88.0 (6.2) and 84.6 (6.5) and 87.7 (6.4)% of VO2MAX respectively). Rms-EMG may be a useful complementary non-invasive method for analysing the aerobic-anaerobic transition (ventilatory and lactate thresholds) in elite cyclists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined effects of attentional focus on swimming speed. Participants` task was to swim one length of a pool (16 m) using the front crawl stroke. In Experiment 1, intermediate swimmers were given attentional focus instructions related to the crawl arm stroke or the leg kick, respectively. Participants were instructed to focus on ""pulling your hands back"" or ""pushing the instep down"" (internal focus), or on ""pushing the water back/down"" (external focus), respectively. Swim times were significantly shorter with an external focus. In Experiment 2, a control condition was included. Times were significantly faster in the external focus compared with both the internal focus and control conditions. These findings have implications for enhancing performance in swimming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatigue was induced in the triceps brachii of the experimental arm by a regimen of either eccentric or concentric muscle actions. Estimates of force were assessed using a contralateral limb-matching procedure, in which target force levels (25 %, 50 % or 75 % of maximum) were defined by the unfatigued control arm. Maximum isometric force-generating capacity was reduced by 31 % immediately following eccentric contractions, and remained depressed at 24 (25 %) and 48 h (13 %) post-exercise. A less marked reduction (8.3 %) was observed immediately following concentric contractions. Those participants who performed prior eccentric contractions, consistently (at all force levels), and persistently (throughout the recovery period), overestimated the level of force applied by the experimental arm. In other words, they believed that they were generating more force than they actually achieved. When the forces applied by the experimental and the control arm, were each expressed as a proportion of the maximum force that could be attained at that time, the estimates matched extremely closely. This outcome is that which would be expected if the estimates of force were based on a sense of effort. Following eccentric exercise, the amplitude of the EMG activity recorded from the experimental arm was substantially greater than that recorded from the control arm. Cortically evoked potentials recorded from the triceps brachii (and extensor carpi radialis) of the experimental arm were also substantially larger than those elicited prior to exercise. The sense of effort was evidently not based upon a corollary of the central motor command. Rather, the relationship between the sense of effort and the motor command appears to have been altered as a result of the fatiguing eccentric contractions. It is proposed that the sense of effort is associated with activity in neural centres upstream of the motor cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Design: Fine-wire EMG rotator cuff onset time analysis in 2 matched groups of throwers with and without pain. Objective: To identify if there is a difference in the activation patterns of the rotator cuff muscles during a rapid shoulder external rotation task between throwers with and without pain. Background: The coordinated action of the rotator cuff is recognized as essential for glenohumeral joint control in the throwing athlete. Identification of abnormalities occurring in muscle activation patterns for injured athletes is relevant when prescribing rehabilitative exercises. Methods and Measures: Twelve throwers with shoulder pain were compared to a matched group of 11 asymptomatic throwers. Participants were matched for age, height, body mass, and habitual activity. Fine-wire EMG electrodes were inserted into the subscapularis, supraspinatus, and infraspinatus. EMG activity was measured during a reaction time task of rapid shoulder external rotation in a seated position. The timing of onset of EMG activity was analyzed in relation to visualization of a light (reaction time) and to the onset of infraspinatus activity (relative latency). Results: In the group with shoulder pain, the onset of subscapularis activity was found to be significantly delayed (reaction time, P = .0018; relative latency, P = .0005) from the onset of infraspinatus activity when compared to the control group. Conclusions: The presence of shoulder pain in these athletes was associated with a difference in the onset of subscapularis EMG activity during a rapid shoulder external rotation movement. This was an initial step in the understanding of the joint protection mechanisms of the glenohumeral joint and the problems that occur in throwers. This information may assist in providing future guidelines for more effective rehabilitation and prevention strategies for this condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use. Copyright (C) 1996 Elsevier Science Ireland Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to compare SEMG activities during axial load exercises on a stable base of support and on a medicine ball (relatively unstable). Twelve healthy male volunteers were tested (x = 23 +/- 7y). Surface EMG was recorded from the biceps brachii, anterior deltoid, clavicular portion of pectoralis major, upper trapezius and serratus anterior using surface differential electrodes. All SEMG data are reported as percentage of RMS mean values obtained in maximal voluntary contractions for each muscle studied. A 3-way within factor repeated measures analysis of variance was performed to compare RMS normalized values. The RMS normalized values of the deltoid were always greater during the exercises performed on a medicine ball in relation to those performed on a stable base of support. The trapezius showed greater mean electric activation amplitude values on the wall-press exercise on a medicine ball, and the pectoralis major on the push-up. The serratus and biceps did not show significant differences of electric activation amplitude in relation to both tested bases of support. Independent of the base of support, none of the studied muscles showed significant differences of electric activation amplitude during the bench-press exercise. The results contribute to the identification of the levels of muscular activation amplitude during exercises that are common in clinical practice of rehabilitation of the shoulder and the differences in terms of type of base of support used. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.