987 resultados para SUBUNIT GENE NDUFV2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) has been proposed recently as a candidate gene for the mouse severe combined immune deficiency (scid) locus. We have used a partial cDNA clone for human DNA-PKcs to map the mouse homologue using a large interspecific backcross panel. We found that the mouse gene for DNA-PKcs does not recombine with scid, consistent with the hypothesis that scid is a mutation in the mouse gene for DNA-PKcs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and that a specific neuronal isoform of type I regulatory subunit (RI beta) is essential. Mice carrying a null mutation in the gene encoding RI beta were established by use of gene targeting in embryonic stem cells. Hippocampal slices from mutant mice show a severe deficit in LTD and depotentiation at the Schaffer collateral-CA1 synapse. This defect is also evident at the lateral perforant path-dentate granule cell synapse in RI beta mutant mice. Despite a compensatory increase in the related RI alpha protein and a lack of detectable changes in total PKA activity, the hippocampal function in these mice is not rescued, suggesting a unique role for RI beta. Since the late phase of CA1 LTP also requires PKA but is normal in RI beta mutant mice, our data further suggest that different forms of synaptic plasticity are likely to employ different combinations of regulatory and catalytic subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The DNA-activated serine/threonine protein kinase (DNA-PK) is composed of a large (approximately 460 kDa) catalytic polypeptide (DNA-PKcs) and Ku, a heterodimeric DNA-binding component (p70/p80) that targets DNA-PKcs to DNA. A 41-kbp segment of the DNA-PKcs gene was isolated, and a 7902-bp segment was sequenced. The sequence contains a polymorphic Pvu II restriction enzyme site, and comparing the sequence with that of the cDNA revealed the positions of nine exons. The DNA-PKcs gene was mapped to band q11 of chromosome 8 by in situ hybridization. This location is coincident with that of XRCC7, the gene that complements the DNA double-strand break repair and V(D)J recombination defects (where V is variable, D is diversity, and J is joining) of hamster V3 and murine severe combined immunodeficient (scid) cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the Saccharomyces cerevisiae SSU71 gene were isolated as suppressors of a transcription factor TFIIB defect that confers both a cold-sensitive growth defect and a downstream shift in transcription start-site selection at the cyc1 locus. The ssu71-1 suppressor not only suppresses the conditional phenotype but also restores the normal pattern of transcription initiation at cyc1. In addition, the ssu71-1 suppressor confers a heat-sensitive phenotype that is dependent upon the presence of the defective form of TFIIB. Molecular and genetic analysis of the cloned SSU71 gene demonstrated that SSU71 is a single-copy essential gene encoding a highly charged protein with a molecular mass of 82,194 daltons. Comparison of the deduced Ssu71 amino acid sequence with the protein data banks revealed significant similarity to RAP74, the larger subunit of the human general transcription factor TFIIF. Moreover, Ssu71 is identical to p105, a component of yeast TFIIF. Taken together, these data demonstrate a functional interaction between TFIIB and the large subunit of TFIIF and that this interaction can affect start-site selection in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the gene encoding the beta subunit of rod cGMP phosphodiesterase are known causes of photoreceptor degeneration in two animal models of retinitis pigmentosa, the rd (retinal degeneration) mouse and the Irish setter dog with rod/cone dysplasia. Here we report a screen of 92 unrelated patients with autosomal recessive retinitis pigmentosa for defects in the human homologue of this gene. We identified seven different mutations that cosegregate with the disease. They were found among four patients with each patient heterozygously carrying two mutations. All of these mutations are predicted to affect the putative catalytic domain, probably leading to a decrease in phosphodiesterase activity and an increase in cGMP levels within rod photoreceptors. Mutations in the gene encoding the beta subunit of rod phosphodiesterase are the most common identified cause of autosomal recessive retinitis pigmentosa, accounting for approximately 4% of cases in North America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through a screen to identify genes that induce multi-drug resistance when overexpressed, we have identified a fission yeast homolog of Int-6, a component of the human translation initiation factor eIF3. Disruption of the murine Int-6 gene by mouse mammary tumor virus (MMTV) has been implicated previously in tumorigenesis, although the underlying mechanism is not yet understood. Fission yeast Int6 was shown to interact with other presumptive components of eIF3 in vivo, and was present in size fractions consistent with its incorporation into a 43S translation preinitiation complex. Drug resistance induced by Int6 overexpression was dependent on the AP-1 transcription factor Pap1, and was associated with increased abundance of Pap1-responsive mRNAs, but not with Pap1 relocalization. Fission yeast cells lacking the int6 gene grew slowly. This growth retardation could be corrected by the expression of full length Int6 of fission yeast or human origin, or by a C-terminal fragment of the fission yeast protein that also conferred drug resistance, but not by truncated human Int-6 proteins corresponding to the predicted products of MMTV-disrupted murine alleles. Studies in fission yeast may therefore help to explain the ways in which Int-6 function can be perturbed during MMTV-induced mammary tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is the most common neurological disorder worldwide affecting about 12% of the worldwide population. This disorder has been classed into two main types of migraine—with and without aura. While a number of factors can influence the onset of migraine, a major factor is that of genetics. The GABAA gene encodes for the GABAA receptor. Along with other receptors, the GABAA receptor is involved in the mediation of neuronal activities. In this study, a GABRG2 gene (GABAA receptor gamma-2-subunit) SNP (rs211037) was genotyped on a migraine case–control population of 546 (273 affected and an equal number of healthy) individuals. Using specifically designed primers, a high resolution melt (HRM) assay was carried out in the genotyping process. After genotyping, results were compared in the case and control populations. Analysis of results showed no significant differences in the allele frequencies between case and control populations. Similarly no differences were detected for subtypes or for a specific gender of migraine (p > 0.05). Although this gene has been previously found to be involved in febrile seizures and there is some co-morbidity between epilepsy and migraine, we decided to investigate this marker for involvement in migraine. The results did not support a role for the tested GABRG2 variant in migraine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Family linkage studies were used to detect two linkage relationships on human chromosome 1. The B subunit of coagulation factor XIII showed significant linkage to renin with a maximum lod score of 5.071 at a distance of 10 cM. Significant linkage was also shown between the Duffy blood group and α-spectrin with linkage results giving a combined lod score of 3.194 at 5 cM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.