989 resultados para SUBSOIL ACIDITY
Resumo:
"This booklet ... is the second in the series."--Foreword.
Resumo:
Bibliography: leaves 110-117.
Resumo:
"June 10, 1909."
Resumo:
Desalination plants could become net absorbers (rather than net emitters) of CO2. Thermal decomposition of salts in desalination reject brine can yield MgO which, added to the ocean, would take up CO2 through conversion to bicarbonate. The process proposed here comprises dewatering of brine followed by decomposition in a solar receiver using a heliostat field.
Resumo:
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SUM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SUM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SUM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SUM rather than SUM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SUM content or C/N ratios. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.
Resumo:
This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the number of steps and acidity are addressed. Finally, issues like the potential durability and clinical importance are discussed. Self-etch adhesive systems are promising materials because they are easy to use, bond chemically to tooth structure and maintain the dentin hydroxyapatite, which is important for the durability of the bonding.
Resumo:
This research studied the effect of low density polyethylene packaging and storage temperature on the preservation of fresh-cut (minimally processed) cabbage. The cabbages, previously cooled to a temperature of 10 ºC, were selected, washed, cut in four parts (with the central stalk removed), sanitized, cut in strips, rinsed, put in the centrifuge, weighed and stored in plastic packaging of low density polyethylene (70 µm), and then stored in cold chambers at temperatures of 1 and 10 ºC for 20 days. The following aspects were evaluated: carbon dioxide, oxygen and ethylene in the internal atmosphere of the package as well as, pH, titratable acidity, total soluble solids, vitamin C, loss of fresh mass and the total soluble solids/acidity in the fresh-cut cabbage ratio. The experimental design was entirely casual, with three repetitions. The analysis parameters, except for the vitamin C, loss of fresh mass and ethylene, presented significant variation between the temperatures and days of storage. The cabbage stored at a temperature of 1 ºC presented a shelf life of around 15 days, significantly higher than that stored at 10 ºC. At this temperature, on the 8th day of storage, the product was completely decayed, unfit for commercialization or consumption.
Resumo:
Postharvest losses vary among the different vegetable products. However, among fruits and vegetables the losses generally range from 30% to 50%. Thus, this paper aimed the application of 1-methylcycloprene (1-MCP) and fast cooling with forced air (PC) on peaches, in order to estimate their effects in the ripening process of this fruit. Physiological analyses were performed, such as loss of fresh mass, firmness, pH, titratable acidity, soluble solids, ratio and CO2 production, as well as sensorial analyses such as color, texture and flavor. The experiment was divided in two phases. In the first one, concentrations of 30, 60, and 90 nL/L 1-MCP, applied at 0 ºC and 20 ºC, were tested. The fruits treated without 1-MCP were denominated control for both temperatures studied. The second phase was composed by the following treatments: cold storage (CS) or control, cooling with forced air (CFA), cooling with forced air followed by 1-MCP application (CFA + 1-MCP) and 1-MCP application (1-MCP). Among these, the CFA + 1-MCP treatment provided more firmness of the fruits in comparison to the control fruits. The respiratory rate of peaches under CFA and CFA + 1-MCP treatments decreased in comparison to the control fruit respiratory rates.
Resumo:
Tomatoes are one of the most important vegetable crops grown in Brazil and are among the crops that have one of the highest post-harvest losses indexes in the country. The present work aimed at evaluating impact damage observed in packing lines of fresh tomatoes as well as to determine, under laboratory conditions, quality alterations of tomato fruits submitted to impact damage in different surface types. Critical points evaluation was accomplished using an instrumented sphere. Critical transference points found showed variations in acceleration levels from 30 to 129 G (m s-2). Tests carried out under laboratory conditions showed that padded surfaces reduced up to 31% impact damage. Incidence of severe internal physical damage was evaluated by a subjective scale and increased by 79% on hard surfaces for the highest fall drop. On the other hand, it was observed an effective reduction in physical damage on fruits when padded surfaces were used. When a 10-cm drop was performed, the maximum reduction measured was 10% for hard surfaces and 5% for previously padded surfaces. For quality parameters, it was observed for high drops on hard surfaces, highest values for weight loss, total acidity, lower values for vitamin C and Soluble Solids.
Resumo:
One of the main objectives of applying edible coatings on fruits surface is to create a protective film to reduce weight loss due to evaporation and transpiration and also to decrease the risk of fruit rot caused by environmental contamination, in order to improve the visual aspect. Therefore, it is possible to increase shelf life, and decrease post harvest losses. Persimmon is a much appreciated fruit, with high potential for export, but sensitive to handling and storage. This study aimed to evaluate the effect of applying the edible coating Megh Wax ECF-124 (18% of active composts, consisting of emulsion of carnauba wax, anionic surfactant, preservative and water) produced by Megh Industry and Commerce Ltda in three different concentrations (25, 50 and 100%) on post harvest quality of 'Fuyu' persimmon stored for 14 days. The attributes evaluated for quality were: firmness, pH, acidity, soluble solids, weight loss and color. The results showed that application of carnauba wax in different concentrations was effective on decreasing weight loss of persimmon cv. Fuyu and maintenance of color aspects. Treatment at lower concentration, 25%, showed lower rate of discharge, but high concentrations showed lower values of mass loss. Carnauba wax application showed a high potential for use on postharvest conservation, and can be applied together with other technologies, helping to maintain quality for export.
Resumo:
Application of calcium silicate (SiCa) as soil acidity corrective was evaluated in a Rhodic Hapludox soil with palisade grass conducted under pasture rotation system with different grazing intensities. Experimental design was complete randomized blocks with four grazing intensities - grazing intensities were imposed by forage supply (50, 100, 150 and 200 kg t-1 of DM per LW) - in experimental plots with four replicates and, in the subplots, with seven doses of calcium silicate combined with lime: 0+0, 2+0, 4+0, 6+0, 2+4, 4+2 and 0+6 t ha-1, respectively. In the soil, it was evaluated the effect of four levels of calcium silicate (0, 2, 4 and 6 t ha-1) at 45, 90, and 365 days at three depths (0-10, 10-20 and 20-40 cm) and at 365 days, it was included one level of lime (6 t ha-1). For determination of leaf chemical composition and silicate content in the soil, four levels of calcium silicate (0, 2, 4 and 6 t ha-1) were evaluated at 45 and 365 days and at 45 days only for leaf silicate, whereas for dry matter production, all corrective treatments applied were evaluated in evaluation seasons. Application of calcium silicate was positive for soil chemical traits related to acidity correction (pH(CaCl2), Ca, Mg, K, H+Al and V), but the limestone promoted better results at 365 days. Leaf mineral contents were not influenced by application of calcium silicate, but there was an increase on silicate contents in leaves and in the soil. Dry matter yield and chemical composition of palisade grass improved with the application of correctives.