975 resultados para STRONTIUM OXIDES
Resumo:
Bi5Ti3FeO15 and Bi7Ti3Fe3O21 which are n=4 and n=6 members of the family of oxides of the general formula (Bi2O2)2+(An−1BnO3n+1)2− show unusual superstructures, possibly due to cation ordering. Bi5Ti3FeO15; Bi7Ti3Fe3O21; oxides.
Resumo:
We have considered a two-band Hubbard model having interlaced Cu-3d(x2−y2) and O-2p(x, y) orbitals representing the CuO2 square planes. Simple CuO2 -cluster calculation suggests that the additional holes created by doping stay mainly on oxygen. Motion of an oxygen hole interlacing with the antiferromagnetically correlated background of copper spins, creates a string of high energy spin configuration of finite length giving mass renormalization. Another hole of opposite spin can now anneal this string tension providing a triangular pairing potential for large pair momentum. The latter implies unusual Bose condensation of the wake-bound compact Bose-like pairs on a non-zero momentum shell. Effect of disorder favouring condensation at the mobility edge is pointed out.
Resumo:
Intra-atomic Auger transitions involving metal energy levels are found to be useful in studying the surface oxidation state as well as the oxidation of metals. Transition Metal oxides also exhibit interatomic Auger transitions, the intensities of which depend on the occupation of the metal d level. The probability of the interatomic transition is therefore highest in oxides where the metal has the d' configuration. The competition between intra-atomic and interatomic Auger transitions in oxides will be discussed as also the use of the interatomic transitions in the study of metal oxidation.
Resumo:
Synthesis and structures of several new oxides containing bismuth are described. Three types of structures are common among the multinary oxides containing trivalent bismuth. They are the sillenite structure of γ-Bi2O3, the layered perovskite structure of Aurivillius phases and the pyrochlore structure. The influence of Bi3+∶6s 2 lone pair electrons is seen in all the three structures. In transition metal oxides containing trivalent bismuth,d o cations (Ti4+, Nb5+, W6+) stabilize the layered perovskite structure, while cations containing partially-filledd orbitals (V4+, Cr3+, Fe3+) favour pyrochlore-related structures. Ferroelectric distortion ofMO6 octahedra of thed o cations seems to play an important role in stabilizing layered perovskite structures.
Resumo:
Some aspects of the properties of oxides of perovskite and K2 NiF4 structures are presented. Some of the interesting aspects discussed are intergrowths, orthorhombicity of superconducting cuprates and importance of holes on oxygen.
Resumo:
Electron energy loss spectroscopy (EELS) has been employed to monitor surface conductivity changes in YBa2Cu3O7 as a function of temperature. Concomitant use of x-ray photoelectron spectroscopy (XPS) establishes that the formation of oxygen dimers with lowering of temperature is accompanied by a simultaneous increase of surface conductivity.
Resumo:
A model of mobile 0-holes hybrized with Cu-spins on a square lattice is examined. A variational groundstate wavefunction which interpolates smoothly between n.n. RVB and Néel limits gives a Néellike minimum. A hole in an AF lattice polarizes it locally and becomes quite mobile. Two n.n. holes attract. Finally we speculate how holes can stabilize a spin liquid state.
Resumo:
Interatomic L3(M)M23(M)V(O) and L3(M)V(O)V(O) Auger transitions of some transition-metal oxides are reported for the first time. The interatomic mode of decay becomes progressively more dominant (relative to the intra-atomic mode) as the metal d level gets depleted or as the oxidation state of the metal increases. The usefulness of interatomic Auger transitions in studying oxidation of metals has been examined.
Resumo:
High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
Magnetic susceptibility studies of lead oxyhalide glasses containing high concentrations of transition metal oxides such as MnO and Fe2O3 have been performed. While they exhibit predominantly antiferromagnetic interactions, the low temperature (<100K) region is dominated by paramagnetic contributions. The behaviour in these glasses is found to be similar to that of covalent oxide glasses and is different from that of purely ionic sulphate glasses.