825 resultados para STRIATED MUSCLE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de dout. em Química, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2002

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Primary tongue tumors rarely affect dogs and correspond to 4% of tumors involving the oropharynx. Until now, primary tongue lymphoma had not been reported. However, lymphoma involvement in the skeletal muscle, although quite unusual, was described in the literature in four cases. Cutaneous lymphoma is another rare extranodal manifestation. The objective of this report is to describe a case of T immunophenotype lymphoma occurrence, whose manifestation is atypical, not only because it is situated in the tongue muscle but also because of the subsequent involvement of the striated musculature of the left forelimb and the skin, which showed unfavorable evolution. Case: A female seven-year-old mongrel was seen showing a regular lump in the base of the tongue, 3 cm in diameter, not ulcerated and of fi rm consistency, with halitosis as the only clinical sign of the disease. Incisional biopsy of the lump was performed and histopathology verifi ed that it was large cell lymphoma. The material was sent for immunohistochemical evaluation and was characterized as T immunophenotype lymphoma by positive CD3 and negative CD79a marking. The CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy protocol was established as treatment and after the fi rst chemotherapy session there was partial remission of the mass, measuring 2 cm in diameter. The lump, however, remained stable in the following sessions. Thirty days after the diagnosis of lymphoma, the animal began to show lameness of the left forelimb and swelling near the head of the left humerus. A muscle mass, fi rm in consistency, progressing fast, presented a signifi cant increase, just three weeks after its appearance. Two skin lesions, arcuate, erythematous and pruritic also appeared in the dorsocervical and ventral-abdominal region. Incisional biopsy of these lesions was performed and the histopathological diagnosis confi rmed muscle and cutaneous large cell lymphoma and immunophenotype compatible with T cells (positive CD3 and negative CD79a). Due to disease advance, even during chemotherapy, a rescue protocol of L-asparaginase administration followed by lomustine and prednisone was proposed. Even with the rescue protocol there was no remission of the tumors and the case was classifi ed as progressive. The animal of this report died after completing the fi rst cycle of chemotherapy protocol, with a survival of 92 days. Discussion: Despite the fact that clinical behavior of primary lymphoma in dogs’ skeletal muscle is unknown, it is believed that, as in humans, it can be associated with chronic infl ammation or neoplastic cell invasion by proximity of the tumor or metastasis, which could justify the dissemination of the lymphoma reported here from the tongue to other tissues. However, appearance of concurrent independent lymphomas cannot be ruled out. As observed in the three cases of primary muscular lymphoma, the dog of this report had low response to therapy and short survival. This report presents the fi rst case of lymphoma in tongue with subsequent skin and left forelimb skeletal muscle involvement described in the literature. The clinical outcome corroborates the aggressiveness of muscular lymphoma observed in the other reports and also suggests that both tongue and other skeletal muscle tumors should be included in the differential diagnosis of canine lymphoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to quantify by intravital microscopy the microhemodynamic response after extracorporeal shock wave application (ESWA) to the physiologic microcirculation of the mouse dorsal skinfold chamber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that or-smooth muscle (alpha -SM) actin is predominantly distributed in the central region and beta -non-muscle (beta -NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha -actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta -NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and ol-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha -SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha -actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sar-comere-like units with alpha -actinin-rich dense bodies analogous to Z-lines, are the contractile vimentin structures of cultured SMCs that link to the network of vimentin-containing intermediate alpha -actinin filaments through the dense bodies and dense plaques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium sensitivity of myosin cross-bridge activation in striated muscles commonly varies during ontogeny and in response to alterations in muscle usage, but the consequences for whole-organism physiology are not well known. Here we show that the relative abundances of alternatively spliced transcripts of the calcium regulatory protein troponin T (TnT) vary widely in flight muscle of Libellula pulchella dragonflies, and that the mixture of TnT splice variants explains significant portions of the variation in muscle calcium sensitivity, wing-beat frequency, and an index of aerodynamic power output during free flight. Two size-distinguishable morphs differ in their maturational pattern of TnT splicing, yet they show the same relationship between TnT transcript mixture and calcium sensitivity and between calcium sensitivity and aerodynamic power output. This consistency of effect in different developmental and physiological contexts strengthens the hypothesis that TnT isoform variation modulates muscle calcium sensitivity and whole-organism locomotor performance. Modulating muscle power output appears to provide the ecologically important ability to operate at different points along a tradeoff between performance and energetic cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.

By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.

To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.

In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle strength and functional independence are considered to be determinants of frailty levels among elderly people. The aim here was to compare lower-limb muscle strength (LLMS) with functional independence in relation to sex, age and number of frailty criteria, and to ascertain the influence of these variables on elderly outpatients' independence. Quantitative cross-sectional study, in a tertiary hospital. The study was conducted on 150 elderly outpatients of both sexes who were in a cognitive condition allowing oral communication, between October 2005 and October 2007. The following instruments were used: five-times sit-to-stand test (FTSST), Functional Independence Measurement (FIM) and Lawton's Instrumental Activities of Daily Living Scale (IADL). Descriptive, comparative, multivariate, univariate and Cronbach alpha analyses were performed. The mean time taken in the FTSST was 21.7 seconds; the mean score for FIM was 82.2 and for IADL was 21.2; 44.7% of the subjects presented 1-2 frailty criteria and 55.3% > 3 criteria. There was a significant association between LLMS and functional independence in relation to the number of frailty criteria, without homogeneity regarding sex and age. Functional independence showed significant influence from sex and LLMS. Elderly individuals with 1 or 2 frailty criteria presented greater independence in all FTSST scores. The subjects with higher LLMS presented better functional independence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3μg/ml) caused a quadriphasic response in PND twitch height whilst at 10μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10μg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10μg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3μg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10μg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.