875 resultados para SSO,Shibboleth,2FA,ADFS,Strong Authentication
Resumo:
We study the multicast stream authentication problem when an opponent can drop, reorder and introduce data packets into the communication channel. In such a model, packet overhead and computing efficiency are two parameters to be taken into account when designing a multicast stream protocol. In this paper, we propose to use two families of erasure codes to deal with this problem, namely, rateless codes and maximum distance separable codes. Our constructions will have the following advantages. First, our packet overhead will be small. Second, the number of signature verifications to be performed at the receiver is O(1). Third, every receiver will be able to recover all the original data packets emitted by the sender despite losses and injection occurred during the transmission of information.
Resumo:
Recently a new human authentication scheme called PAS (predicate-based authentication service) was proposed, which does not require the assistance of any supplementary device. The main security claim of PAS is to resist passive adversaries who can observe the whole authentication session between the human user and the remote server. In this paper we show that PAS is insecure against both brute force attack and a probabilistic attack. In particular, we show that its security against brute force attack was strongly overestimated. Furthermore, we introduce a probabilistic attack, which can break part of the password even with a very small number of observed authentication sessions. Although the proposed attack cannot completely break the password, it can downgrade the PAS system to a much weaker system similar to common OTP (one-time password) systems.
Resumo:
The first generation e-passport standard is proven to be insecure and prone to various attacks. To strengthen, the European Union (EU) has proposed an Extended Access Control (EAC) mechanism for e-passports that intends to provide better security in protecting biometric information of the e-passport bearer. But, our analysis shows, the EU proposal fails to address many security and privacy issues that are paramount in implementing a strong security mechanism. In this paper we propose an on-line authentication mechanism for electronic passports that addresses the weakness in existing implementations, of both The International Civil Aviation Organisation (ICAO) and EU. Our proposal utilises ICAO PKI implementation, thus requiring very little modifications to the existing infrastructure which is already well established.
Resumo:
The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. This investigation shows that the removal of fluoride using red mud is significantly improved if red mud is initially acidified. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡ SOH2+ and ≡ SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡ SOH2+ as the substitution of a fluoride ion doesn’t cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud.
Resumo:
Aim To establish the suitability of multiplex tandem polymerase chain reaction (MT-PCR) for rapid identification of oestrogen receptor (ER) and Her-2 status using a single, formalin-fixed, paraffin-embedded (FFPE) breast tumour section. Methods Tissue sections from 29 breast tumours were analysed by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH). RNA extracted from 10μm FFPE breast tumour sections from 24 of 29 tumours (14 ER positive and 5 Her-2 positive) was analysed by MT-PCR. After establishing a correlation between IHC and/or FISH and MT-PCR results, the ER/Her-2 status of a further 32 randomly selected, archival breast tumour specimens was established by MT-PCR in a blinded fashion, and compared to IHC/FISH results. Results MT-PCR levels of ER and Her-2 showed good concordance with IHC and FISH results. Furthermore, among the ER positive tumours, MT-PCR provided a quantitative score with a high dynamic range. Threshold values obtained from this data set applied to 32 archival tumour specimens showed that tumours strongly positive for ER and/or Her-2 expression were easily identified by MT-PCR. Conclusion MT-PCR can provide rapid, sensitive and cost-effective analysis of FFPE material and may prove useful as triage to identify patients suited to endocrine or trastuzumab (Herceptin) treatment.
Resumo:
Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving---a form of self-enforcement---and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic construction using a new type of trapdoor functions with extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum integer.
Resumo:
In this paper we tackle the problem of finding an efficient signature verification scheme when the number of signatures is signi.- cantly large and the verifier is relatively weak. In particular, we tackle the problem of message authentication in many-to-one communication networks known as concast communication. The paper presents three signature screening algorithms for a variant of ElGamal-type digital signatures. The cost for these schemes is n applications of hash functions, 2n modular multiplications, and n modular additions plus the verification of one digital signature, where n is the number of signatures. The paper also presents a solution to the open problem of finding a fast screening signature for non-RSA digital signature schemes.
Resumo:
A parallel authentication and public-key encryption is introduced and exemplified on joint encryption and signing which compares favorably with sequential Encrypt-then-Sign (ɛtS) or Sign-then-Encrypt (Stɛ) schemes as far as both efficiency and security are concerned. A security model for signcryption, and thus joint encryption and signing, has been recently defined which considers possible attacks and security goals. Such a scheme is considered secure if the encryption part guarantees indistinguishability and the signature part prevents existential forgeries, for outsider but also insider adversaries. We propose two schemes of parallel signcryption, which are efficient alternative to Commit-then-Sign-and- Encrypt (Ct&G3&S). They are both provably secure in the random oracle model. The first one, called generic parallel encrypt and sign, is secure if the encryption scheme is semantically secure against chosen-ciphertext attacks and the signature scheme prevents existential forgeries against random-message attacks. The second scheme, called optimal parallel encrypt. and sign, applies random oracles similar to the OAEP technique in order to achieve security using encryption and signature components with very weak security requirements — encryption is expected to be one-way under chosen-plaintext attacks while signature needs to be secure against universal forgeries under random-plaintext attack, that is actually the case for both the plain-RSA encryption and signature under the usual RSA assumption. Both proposals are generic in the sense that any suitable encryption and signature schemes (i.e. which simply achieve required security) can be used. Furthermore they allow both parallel encryption and signing, as well as parallel decryption and verification. Properties of parallel encrypt and sign schemes are considered and a new security standard for parallel signcryption is proposed.
Resumo:
We study the multicast stream authentication problem when an opponent can drop, reorder and inject data packets into the communication channel. In this context, bandwidth limitation and fast authentication are the core concerns. Therefore any authentication scheme is to reduce as much as possible the packet overhead and the time spent at the receiver to check the authenticity of collected elements. Recently, Tartary and Wang developed a provably secure protocol with small packet overhead and a reduced number of signature verifications to be performed at the receiver. In this paper, we propose an hybrid scheme based on Tartary and Wang’s approach and Merkle hash trees. Our construction will exhibit a smaller overhead and a much faster processing at the receiver making it even more suitable for multicast than the earlier approach. As Tartary and Wang’s protocol, our construction is provably secure and allows the total recovery of the data stream despite erasures and injections occurred during transmission.
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Secure protocols for password-based user authentication are well-studied in the cryptographic literature but have failed to see wide-spread adoption on the Internet; most proposals to date require extensive modifications to the Transport Layer Security (TLS) protocol, making deployment challenging. Recently, a few modular designs have been proposed in which a cryptographically secure password-based mutual authentication protocol is run inside a confidential (but not necessarily authenticated) channel such as TLS; the password protocol is bound to the established channel to prevent active attacks. Such protocols are useful in practice for a variety of reasons: security no longer relies on users' ability to validate server certificates and can potentially be implemented with no modifications to the secure channel protocol library. We provide a systematic study of such authentication protocols. Building on recent advances in modelling TLS, we give a formal definition of the intended security goal, which we call password-authenticated and confidential channel establishment (PACCE). We show generically that combining a secure channel protocol, such as TLS, with a password authentication protocol, where the two protocols are bound together using either the transcript of the secure channel's handshake or the server's certificate, results in a secure PACCE protocol. Our prototype based on TLS is available as a cross-platform client-side Firefox browser extension and a server-side web application which can easily be installed on deployed web browsers and servers.
Resumo:
In this paper, the security of two recent RFID mutual authentication protocols are investigated. The first protocol is a scheme proposed by Huang et al. [7] and the second one by Huang, Lin and Li [6]. We show that these two protocols have several weaknesses. In Huang et al.’s scheme, an adversary can determine the 32-bit secret password with a probability of 2−2 , and in Huang-Lin-Li scheme, a passive adversary can recognize a target tag with a success probability of 1−2−4 and an active adversary can determine all 32 bits of Access password with success probability of 2−4 . The computational complexity of these attacks is negligible.