253 resultados para SPLINE
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Objective: Early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome [PS]) is a common and easily recognizable epilepsy. Interictal EEG spike activity is often multifocal but most frequently localized in the occipital lobes. The origin and clinical significance of the extra-occipital spikes remain poorly understood. Methods: Three patients with the PS and interictal EEG spikes with frontal lobe topography were studied using high-resolution EEG. Independent component analysis (ICA) was used to decompose the spikes in components with distinct temporal dynamics. The components were mapped in the scalp with a spline-laplacian algorithm. Results: The change in scalp potential topography from spike onset to peak, suggests the contribution of several intracranial generators, with different kinetics of activation and significant overlap. ICA was able to separate the major contributors to frontal spikes and consistently revealed an early activating group of components over the occipital areas in all the patients. The local origin of these early potentials was established by the spline-laplacian montage. Conclusions: Frontal spikes in PS are consistently associated with early and unilateral occipital lobe activation, suggesting a posteroanterior spike propagation. Significance: Frontal spikes in the PS represent a secondary activation triggered by occipital interictal discharges and do not represent an independent focus.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis, pela Universidade Nova de Lisboa, Faculdade de Ciência e Tecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
La RMB es una ciudad de tipo policéntrico en la que resaltan unas ciudades de tamaño medio con elevada presencia de actividad económica y que, en muchos casos, destacan por sus dinámicas de crecimiento endógeno. El objetivo de esta investigación era hallar evidencia empírica en la RMB acerca de los determinantes de la localización de la actividad económica. Un objetivo que, a la par, requería la inclusión del estudio de la estructura urbana de la región para poder evaluar el efecto que en ella ejercen los determinantes de la localización. Si bien los resultados obtenidos con la Exponencial son buenos, la inclusión de formas funcionales de tipo polinómico para capturar los grumos de densidad han demostrado su eficiencia. Aunque la Cubic-Spline obtiene buenos resultados, tiene el inconveniente de no poder interpretar sus coeficientes. No obstante, nuestra propuesta, la Spline-Lineal, nos permite detectar la presencia de los subcentros que constituyen la región en base a la existencia de gradientes de densidad positivos.
Resumo:
The metropolitan spatial structure displays various patterns, sometimes monocentricity and sometimes multicentricity, which seems much more complicated than the exponential density function used in classic works such as Clark (1961), Muth (1969) or Mills (1973) among others, can effectively represent. It seems that a more flexible density function,such as cubic spline function (Anderson (1982), Zheng (1991), etc.) to describe the density-accessibility relationship is needed. Also, accessibility, the fundamental determinant of density variations, is only partly captured by the inclusion of distance to the city centre as an explanatory variable. Steen (1986) has proposed to correct that miss-especification by including an additional gradient for distance to the nearest transportation axis. In identifying the determinants of urban spatial structure in the context of inter-urban systems, some of the variables proposed by Muth (1969), Mills (1973) and Alperovich (1983) such as city age or population, make no sense in the case of a single urban system. All three criticism to the exponential density function and its determinants apply for the Barcelona Metropolitan Region, a polycentric conurbation structured on well defined transportation axes.
Resumo:
During the last two decades there has been an increase in using dynamic tariffs for billing household electricity consumption. This has questioned the suitability of traditional pricing schemes, such as two-part tariffs, since they contribute to create marked peak and offpeak demands. The aim of this paper is to assess if two-part tariffs are an efficient pricing scheme using Spanish household electricity microdata. An ordered probit model with instrumental variables on the determinants of power level choice and non-paramentric spline regressions on the electricity price distribution will allow us to distinguish between the tariff structure choice and the simultaneous demand decisions. We conclude that electricity consumption and dwellings’ and individuals’ characteristics are key determinants of the fixed charge paid by Spanish households Finally, the results point to the inefficiency of the two-part tariff as those consumers who consume more electricity pay a lower price than the others.
Resumo:
La solución a los problemas de disponibilidad horaria para la realización de sesiones prácticas por parte de los estudiantes se encuentra en los laboratorios remotos, que permiten a estos interactuar con los elementos instalados en los laboratorios sin necesidad de estar presentes físicamente. Este proyecto pretende crear un laboratorio remoto para la asignatura “Robótica y Automatización Industrial” impartida en la ETSE, UAB, en el cual los estudiantes puedan ejecutar trayectorias de tipo spline cúbico en un brazo robot y observar a través de vídeo en tiempo real los movimientos del robot desde cualquier lugar con conexión a Internet.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
BACKGROUND In previous meta-analyses, tea consumption has been associated with lower incidence of type 2 diabetes. It is unclear, however, if tea is associated inversely over the entire range of intake. Therefore, we investigated the association between tea consumption and incidence of type 2 diabetes in a European population. METHODOLOGY/PRINCIPAL FINDINGS The EPIC-InterAct case-cohort study was conducted in 26 centers in 8 European countries and consists of a total of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,835 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. Country-specific Hazard Ratios (HR) for incidence of type 2 diabetes were obtained after adjustment for lifestyle and dietary factors using a Cox regression adapted for a case-cohort design. Subsequently, country-specific HR were combined using a random effects meta-analysis. Tea consumption was studied as categorical variable (0, >0-<1, 1-<4, ≥ 4 cups/day). The dose-response of the association was further explored by restricted cubic spline regression. Country specific medians of tea consumption ranged from 0 cups/day in Spain to 4 cups/day in United Kingdom. Tea consumption was associated inversely with incidence of type 2 diabetes; the HR was 0.84 [95%CI 0.71, 1.00] when participants who drank ≥ 4 cups of tea per day were compared with non-drinkers (p(linear trend) = 0.04). Incidence of type 2 diabetes already tended to be lower with tea consumption of 1-<4 cups/day (HR = 0.93 [95%CI 0.81, 1.05]). Spline regression did not suggest a non-linear association (p(non-linearity) = 0.20). CONCLUSIONS/SIGNIFICANCE A linear inverse association was observed between tea consumption and incidence of type 2 diabetes. People who drink at least 4 cups of tea per day may have a 16% lower risk of developing type 2 diabetes than non-tea drinkers.
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.
Resumo:
Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.