973 resultados para SOIL NEMATODE COMMUNITY
Resumo:
Soil is an unrenewable natural resource under increasing anthropogenic pressure. One of the main threats to soils, compromising their ability to provide us with the goods and ecosystem services we expect, is pollution. Oil hydrocarbons are the most common soil contaminants, and they disturb not just the biota but also the physicochemical properties of soils. Indigenous soil micro-organisms respond rapidly to changes in the soil ecosystem, and are chronically in direct contact with the hydrophobic pollutants on the soil surfaces. Soil microbial variables could thus serve as an intrinsically relevant indicator of soil quality, to be used in the ecological risk assessment of contaminated and remediated soils. Two contrasting studies were designed to investigate soil microbial ecological responses to hydrocarbons, together with parallel changes in soil physicochemical and ecotoxicological properties. The aim was to identify quantitative or qualitative microbiological variables that would be practicable and broadly applicable for the assessment of the quality and restoration of oil-polluted soil. Soil bacteria commonly react on hydrocarbons as a beneficial substrate, which lead to a positive response in the classical microbiological soil quality indicators; negative impacts were accurately reflected only after severe contamination. Hydrocarbon contaminants become less bioavailable due to weathering processes, and their potentially toxic effects decrease faster than the total concentration. Indigenous hydrocarbon degrader bacteria, naturally present in any terrestrial environment, use specific mechanisms to improve access to the hydrocarbon molecules adsorbed on soil surfaces. Thus when contaminants are unavailable even to the specialised degraders, they should pose no hazard to other biota either. Change in the ratio of hydrocarbon degrader numbers to total microbes was detected to predictably indicate pollutant effects and bioavailability. Also bacterial diversity, a qualitative community characteristic, decreased as a response to hydrocarbons. Stabilisation of community evenness, and community structure that reflected clean reference soil, indicated community recovery. If long-term temporal monitoring is difficult and appropriate clean reference soil unavailable, such comparison could possibly be based on DNA-based community analysis, reflecting past+present, and RNA-based community analysis, showing exclusively present conditions. Microbial ecological indicators cannot replace chemical oil analyses, but they are theoretically relevant and operationally practicable additional tools for ecological risk assessment. As such, they can guide ecologically informed and sustainable ecosophisticated management of oil-contaminated lands.
Resumo:
集约化养殖大量使用铜(Cu)作为饲料添加剂会在养殖废物的排放和利用中导致一定的环境问题。随着东北老工业基地产业结构的调整,畜牧业作为东北地区二次振兴的主要产业得到迅速发展,由此会产生大量的畜禽粪便用于农业土壤施肥。而东北地区又是我国重要的农副产品生产基地,研究畜禽粪便农用的健康及环境风险就显得殊为必要。黑土是东北地区最主要的土壤类型,本文以东北黑土为供试材料,通过在盆栽实验中添加不同Cu浓度的猪粪来模拟施肥年限不同的菜园土,研究土壤中Cu累积对小白菜(Brassica chinensis L.)地上部分生物量与Cu含量、土壤微生物生物量和土壤酶(脱氢酶、脲酶、酸性磷酸酶)活性、微生物群落功能多样性以及对土壤功能微生物——氨氧化古菌(AOA)和氨氧化细菌(AOB)等的影响,从而实现含Cu猪粪农用对食物链途径的健康风险以及土壤生态系统的生态风险的综合评价。 研究结果表明,施用猪粪显著地改善了土壤的pH,增加了小白菜地上部分生物量,对其体内Cu浓度则没有显著影响;小白菜地上部分Cu浓度与土壤全Cu和水溶态Cu浓度显著正相关(P<0.01),而地上生物量与土壤全Cu浓度显著负相关(P<0.05)。当土壤全Cu浓度达到300 mg kg-1后,小白菜地上部分生物量受到强烈抑制。 猪粪的施用在一定时期内显著地促进了脱氢酶和脲酶的活性,但随土壤Cu浓度的增加,脱氢酶、脲酶和酸性磷酸酶的活性逐渐受到抑制。当土壤全Cu浓度达到300 mg kg-1后,微生物生物量、脱氢酶、脲酶、酸性磷酸酶等均受到强烈抑制。 施加猪粪提高了土壤微生物群落功能多样性,当土壤Cu浓度达到170 mg kg-1后,显著地抑制了微生物群落功能多样性。种植小白菜后,各处理间微生物群落功能多样性没有显著差异,意味着植物能够维持微生物群落功能多样性。主成分分析(PCA)结果显示,当土壤全Cu浓度达到300 mg kg-1后,微生物群落功能多样性与其它处理显著不同。 猪粪显著地促进了土壤的硝化潜势速率(PNR)。随着Cu浓度的增加,硝化潜势速率逐渐受到抑制,当土壤全Cu浓度达到170 mg kg-1后,即与对照无显著差异。植物在维持硝化速率方面也起到重要作用。古菌amoA基因在每克干土中的拷贝数在9.4*106~2.59*107,细菌amoA基因在每克干土中的拷贝数约为1.48*106~1.41*107。猪粪在一定时期内显著地增加了AOA和AOB的数量,当土壤Cu浓度达到300 mg kg-1后,AOA和AOB的数量显著下降,并且AOA与AOB amoA基因拷贝数的比值增加,在小白菜栽种前(B1)和小白菜收获后(B2)分别为2.33和9.26,这意味着在高Cu浓度胁迫下,AOA的耐受性更强。古菌与细菌的amoA拷贝数与PNR之间则没有显著的相关关系,意味着AOA和AOB种群结构以及其中某些种群的活性可能发生了变化。 本文通过对东北黑土菜地土壤中Cu在作物体内的迁移积累及其对土壤微生物学指标(微生物生物量、酶活性、微生物群落功能多样性及功能微生物)的影响的综合研究,揭示了含Cu猪粪农用所造成的健康和生态风险,为建立适宜的土壤环境质量标准提供了一定的科学依据。通过本研究得出,黑土蔬菜种植中Cu浓度的阈值在170-300 mg kg-1之间。
Resumo:
存在明显的季节性干旱的实验地的自然生境(无遮荫不补水处理)对于1年生紫茎泽兰来说具有胁迫作用,而对于本地草本植物群落来说,这样的季节性干旱并不存在胁迫作用;在单层遮荫不补水的处理中,紫茎泽兰具有竞争优势,而单层遮荫补水处理对紫茎泽兰的竞争不利。在双层遮荫补水的处理中,紫茎泽兰表现出对本地植物较大的相对竞争优势,但双层覆盖对于二者的生长均构成了较严重的胁迫。 在无覆盖不补水的处理中,紫茎泽兰定居期的死亡率最高,而定居后的生长指标(平均高和平均单株干重)在补水和不补水条件之间没有明显差异;在双层覆盖条件下,紫茎泽兰存活率在补水和不补水条件下,绝对值都较高,而平均单株干重在补水和不补水条件下都比较低;在单层覆盖条件下,紫茎泽兰存活率在补水和不补水条件下都较高,紫茎泽兰的平均高和平均单株干重在不补水处理都显著高于补水处理,而且明显高于其他不覆盖、双层覆盖的补水和不补水处理。说明在实验地的自然生境中,本地群落对紫茎泽兰早期(侵入定居)具有一定的抵抗力,但在这样的生境中的本地植物群落对紫茎泽兰的后期(定居之后)的发展的抵抗力较低;双层覆盖条件(相当于郁闭度高的林下生境)对紫茎泽兰的早期侵入定居虽然抵抗力较差,但是对紫茎泽兰的后期(定居之后)的发展具有较强的抑制作用;单层覆盖条件(相当于受到人畜干扰的郁闭度较低的林下生境)下,本地群落对紫茎泽兰早期侵入定居和后期(定居之后)的发展抵抗力都很低,这一结果提醒我们,紫茎泽兰易于侵入受到过人为干扰的郁闭度较低的林下生境并产生严重危害。 刈割干扰对紫茎泽兰的入侵具有明显的促进作用,高强度刈割的促进作用主要体现在促进紫茎泽兰的个体生长速度和群体生物量上,但低强度刈割的促进作用主要体现在入侵定居的个体数量和群体生物量上。低强度刈割处理中的紫茎泽兰的密度为高强度刈割处理的5倍,单位面积上的紫茎泽兰的生物量最高,达到高强度刈割处理的2.5倍,可见对于紫茎泽兰的入侵而言,低强度的刈割干扰比高强度刈割干扰具有更大的促进作用。 本地植物雀麦、豆科植物、鱼眼草和香薷在与紫茎泽兰混栽后,它们的根际土壤微生物群落结构与紫茎泽兰根际土壤微生物相似性更高,而偏相关分析结果表明,豆科植物和鱼眼草的根际土壤微生物群落结构的变化与它们的生物量生长具有一定的关联性,而对于雀麦和香薷的根际土壤微生物群落结构的变化与它们的生物量生长的关联性不明显,说明紫茎泽兰入侵本地植物群落后可以对生态系统的土壤微生物群落结构造成较大的影响,而微生物的改变并不是对所有的本地植物来说都是非常严峻的。虽然我们实验中的4种本地植物中只有2种本地植物的生长表现出与其根际土壤微生物变化的显著相关性,但这对于本地植物群落已经是非常严重的威胁。
Resumo:
对污染土壤修复过程中土壤细菌群落多样性的变化进行研究。【方法】以淹水培养后的模拟铬污染土壤为供试材料,通过直接提取土壤中总细菌DNA,利用细菌专一引物克隆细菌16S rDNA片段,分别建立克隆文库。利用PCR-RFLP技术,分析比较了土壤淹水10 d(对照,S1)、添加Cr(Ⅵ)淹水10 d(S2)、添加Cr(Ⅵ)和Fe(OH)3淹水10 d(S3)及20 d(S4)4个处理中土壤细菌群落的变化。【结果】用专一引物克隆细菌16S rDNA片段,分别建立了克隆文库;用限制性内切酶RsaⅠ进行细菌16S rDNA PCR-RFLP分析,分别得到123,120,97和69个酶切类型,库容值分别为54.92%,55.43%,65.33%和76.60%;Shannon-Wiener指数、Gini指数、物种丰富度指数(dMa)和物种均匀度指数(Jgi)均表现为S1>S2>S3>S4,以上4个指数的变异系数分别为11.51%,1.84%,23.64%和1.55%;基于细菌多样性参数的聚类分析结果,将对照S1和添加Cr(Ⅵ)处理的S2归于一类,而2个添加Fe处理的土壤S3和S4聚为一类。【结论】经过10 d淹水处理,...
Resumo:
本研究立足于松辽平原农田生态系统,研究土壤线虫物种多样性,营养类群多样性,生活史多样性和功能多样性的分布规律,为进一步揭示线虫主要功能类群与土壤C、N等土壤环境因子之间的相互关系提供基础性数据。 在松辽平原沿不同纬度梯度,选择北至黑龙江海伦,南至辽宁大石桥共7个地点的玉米地,按照0–20 cm、20–40 cm、40–60 cm、60–80 cm和80–100 cm五个层次分层采集土壤样品。研究发现,土壤线虫多样性的纬度分布格局在0–40 cm土层表现得比较明显。在不同农田生态系统中,线虫属的丰富度在0–100 cm的土壤剖面内,随着土层深度的加深而降低;在0–40 cm土层,线虫属的丰富度随纬度梯度的降低而表现出增加的趋势,最高值(18属)出现在大石桥的0–20 cm土层,最低值出现在海伦采样点的20–40 cm土层,仅观察到10个线虫属。通过对松辽平原农田土壤线虫的生活史策略组成进行研究发现,在不同采样地点,不同生活史的土壤线虫表现出不同的分布特征:在0–20 cm土层,cp-2类群线虫的相对多度随纬度的降低表现出降低的趋势,而cp-3-5的线虫则表现出增加的趋势。在不同土层研究发现, 线虫的营养多样性指数没有表现出明显的纬度分布格局,而在0–20 cm土层,食细菌线虫和捕食/杂食线虫的相对多度随纬度的降低表现出降低的趋势,而植物寄生线虫则随纬度的降低而呈增加的趋势。土壤线虫区系分析结果表明,海伦样点土壤食物网受到的扰动较小,而处于结构化状态;而哈尔滨,公主岭和沈阳采样点的土壤食物网处于退化状态,受到外界环境扰动较大。通过对松辽平原农田土壤线虫群落与理化因子的典型对应分析,可以看出相关的土壤理化性质如阳离子交换量、有机碳、全氮和粘粒含量等能够在一定程度上解释松辽平原农田土壤线虫群落的分布特征。
Resumo:
大气CO2浓度升高可以通过植物间接影响土壤生态系统。土壤生态系统的结构和功能改变将影响有机质矿化和营养物质循环,进而可能对CO2浓度升高产生正反馈或负反馈。微生物是土壤生态系统的主体,在对CO2浓度升高的反馈中起着至关重要的作用。本研究以开顶箱系统为平台,采用微生物分子生态学技术和现代酶学技术,通过对长期接受500 ppm CO2的红松幼树、长白赤松幼树和蒙古栎幼树非根际土壤连续两个生长季的测定,系统研究了高浓度CO2对温带森林土壤微生物群落的生物量和微生物活性的影响,检测了土壤微生物群落的结构和功能以及土壤化学性质变化,主要结论如下: (1)高浓度CO2处理提高了土壤有机碳含量。与对照组相比较,红松幼树土壤有机碳含量提高9.4%;长白赤松幼树土壤提高0.6%;蒙古栎幼树土壤提高1.3%。 (2)高浓度CO2处理使土壤磷酸酶(phosphatase)、几丁质酶(1,4-β-acetylglucosaminidase, 1,4-β-NAG)和多酚氧化酶(phenol oxidase)活性发生了显著变化,高浓度CO2使红松土壤 1,4-β-NAG活性提高7-25%,长白松土壤1,4-β-NAG平均活性降低14%,蒙古栎土壤1,4-β-NAG平均活性提高31%。 同时研究还发现,过氧化物酶(peroxidase)和多酚氧化酶(phenol oxidase)活性与微生物量碳和微生物量氮呈显著的正相关。相关分析还显示,土壤湿度与1,4-α-葡萄糖苷酶(1,4-α-glucosidase)活性、 微生物生物量碳和微生物生物量氮呈显著的正相关。 高浓度CO2在不同程度上改变了土壤转化酶活性和脱氢酶活性。高浓度CO2显著提高了红松和长白赤松土壤硝化酶活性;而显著降低反硝化酶活性。 (3)研究发现三种树土壤的真菌和细菌群落存在着季节性演替,并且高浓度CO2熏蒸处理使真菌群落结构发生了显著的变化,表现为一些种群优势度下降,另一些升高。虽然,细菌群落没有如真菌群落变化的明显,但研究中也发现高浓度CO2的确使个别细菌种群的优势度发生了显著改变。 亲缘关系与Calocybe carnea,Magmatodrilus obscurus密切的真菌是红松土壤优势种群,与Humicola fuscoatra关系相近的是长白松土壤的优势种群,并且此三种真菌的季节性变化不显著。研究发现高浓度CO2使红松土壤中亲缘关系与Pachyella clypeata,Cochlonema euryblastum,Lepiota cristata,Eimeriidae sp., Trichoderma sp.相近的种群的丰富度显著提高,使蒙古栎土壤中亲缘关系与Serendipita vermifera,Calocybe carnea种群丰富度显著下降,使蒙古栎土壤中与Candida sp.,Magmatodrilus obscurus和Pachyella clypeata亲缘关系密切种群的丰富度显著提高。 (4)三种幼树叶的原位分解培养429天结果显示,红松和长白松凋落物的β-葡萄糖苷酶(1,4-β-glucosidase)和木糖苷酶(1,4-β-xylosidase)活性随着分解而逐渐增加,而这两种酶在蒙古栎凋落物分解过程中保持相对恒定;高浓度CO2显著影响叶凋落物分解磷酸酶(phosphatase),纤维二糖酶(cellobiohydrolase), 几丁质酶(1,4-β-NAG),多酚氧化酶(phenol oxidase)和过氧化物酶(peroxidase)的活性。研究发现,凋落物的生物化学性质变化能引起分解的微生物群落发生变化,进而引起分泌的胞外酶活性变化,科学印证了大气CO2浓度升高“通过影响凋落物质量进而影响分解叶凋落物的微生物群落的结构和功能”的猜测。 不同凋落物之间酶活性差异显著,真菌和细菌群落结构也显著不同。序列与Hyphodiscus hymeniophilus亲缘关系密切的真菌和亲缘关系与Verrucomicrobia bacterium密切的细菌是长白松凋落分解的最优势种群,序列与Lophium mytilinum亲缘关系密切的真菌是红松凋落分解的最优势种群。 另外,研究还发现,高浓度CO2使参与分解红松凋落物Beta proteobacterium OS-15A亲缘关系相近的细菌种群和与Azospirillum amazonense亲缘关系相近的种群丰富度显著降低;使与Luteibactor rhizovicina亲缘关系相近的种群和与Luteibactor rhizovicina亲缘关系相近的种群显著提高。高浓度CO2使定殖于长白松凋落物上Hyphodiscus hymeniophilus亲缘关系相近的种群和与Bionectria pityrodes亲缘关系相近的种群显著提高,而使与Neofabraea malicorticis亲缘关系相近的种群和与Hyphodiscus hymeniophilus亲缘关系相近的种群显著下降。
Resumo:
大气CO_2浓度升高能够对生态系统产生一系列的影响。土壤线虫在农田生态系统腐屑食物网中占有重要的地位,能够对环境变化作出较迅速的反应。本文利用江苏省无锡市稻一麦轮作FACE系统研究平台,研究了大气CO_2浓度升高对农田土壤线虫群落的影响。在麦田生态系统中共观察到土壤线虫29科40属。研究发现大气CO_2浓度升高对土壤线虫的影响存在季节性的波动,不同营养类群的土壤线虫在不同生长关键期受大气CO2浓度升高影响的程度不同。在大气CO_2浓度升高(FACE)条件下,土壤线虫总数,食细菌线虫和食真菌线虫数量显著增加。由于土壤温湿条件的季节变化,只有在适宜的条件下,大气CO_2浓度升高对土壤线虫的影响才比较显著。在稻田生态系统中共观察到土壤线虫27科40属。研究发现,大气CO_2浓度升高能使土壤线虫总数和植物寄生线虫数量增加。在O-5cm土层,FACE系统中食真菌线虫数量显著低于对照。在5一10 cm土层,FACE系统中植物寄生线虫的潜根属(Hirschmanniella)和散香属(Boleodorus)线虫数量显著高于对照,对CO2浓度升高的反应较敏感。本研究试图为在全球变化条件下进一步认识土壤动物对农田生态 系统生态过程产生的影响提供参考。
Resumo:
Dynamics of soil nematode communities amended with agrochemicals and bio control preparations were investigated in a soybean field. The results showed that the frequency of plant non parasitic nematodes were obviously higher in soil amended with bio control preparations (Doufeng 1) than with urea and herbicide, however, that of plant parasitic nematodes exhibited an inverse trend.
Resumo:
The context: Soil biodiversity and sustainable agriculture; Abstracts - Theme 1: Monitoring and assessment: Bioindicators of soil health: assessment and monitoring for sustainable agriculture; Practical tools to measure soil health and their use by farmers; Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance; Integrated management of plant-parasitic nematodes in maize-bean cropping systems; Microbial quantitative and qualitative changes in soils under different crops and tillage management systems in Brazil; Diversity in the rhizobia associated with Phaseolus vulgaris L: in Ecuador and comparisons with Mexican bean rhizobia; Sistemas integrados ganadería-agricultura en Cuba; Soil macrofauna as bioindicator of soil quality; Biological functioning of cerrado soils; Hydrolysis of fluorescein diacetate as a soil quality indicator in different pasture systems; Soil management and soil macrofauna communities at Embrapa Soybean, Londrina, Brazil; Soil macrofauna in a 24 - year old no-tillage system in Paraná, Brazil; Invertebrate macrofauna of soils inpastures under different forms of management in the cerrado (Brazil); Soil tillage modifies the invertebrate soil macrofauna community; Soil macrofauna in various tillage and land use systems on an oxisols near Londrina, Paraná, Brazil; Interference of agricultural systems on soil macrofauna; Scarab beetle-grub holes in various tillage and crop management systems at Embrapa Soybean, Londrina, Brazil; Biological management of agroecosystems; Soil biota and nutrient dynamics through litterfall in agroforestry system in Rondônia, Amazônia, Brazil; Soil-C stocks and earthworm diversity of native and introduced pastures in Veracruz, Mexico; Theme 2 : Adaptive management: Some thoughts on the effects and implications of the transition from weedy multi-crop to wead-free mono-crop systems in Africa; Towards sustainable agriculture with no-tillage and crop rotation systems in South Brazil; Effect of termites on crusted soil rehabilitation in the Sahel; Management of macrofauna in traditional and conventional agroforestry systems from India with special reference to termites and earthworms; Adaptive management for redeveloping traditional agroecosystems; Conservation and sustainable use of soil biodiversity: learning with master nature!; Convergence of sciences: inclusive technology innovation processes for better integrated crop/vegetation, soil and biodiversity management; Potential for increasing soil biodiversity in agroecosystems; Biological nitrogen fixation and sustainability in the tropics; Theme 3: Research and innovation: Plant flavonoids and cluster roots as modifiers of soil biodiversity; The significance of biological diversity in agricultural soil for disease suppressiveness and nutrient retention; Linking above - and belowground biodiversity: a comparison of agricultural systems; Insect-pests in biologically managed oil and crops: the experience at ICRISAT; Sistemas agricolas micorrizados en Cuba; The effect of velvetbean (Mucuna pruriens) on the tropical earthworm Balanteodrilus pearsei: a management option for maize crops in the Mexican humid tropics; The potential of earthworms and organic matter quality in the rehabilitation of tropical soils; Research and innovation in biological management of soil ecosystems; Application of biodynamic methods in the Egyptian cotton sector; Theme 4: Capacity building and mainstreaming: Soil ecology and biodiversity: a quick scan of its importance for government policy in The Netherlands; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Agricultura urbana en Cuba; Soil carbon sequestration for sustaining agricultural production and improving the environment; Conservation and sustainable management of below-ground biodiversity: the TSBF-BGBD network project; The tropical soil biology and fertility institute of CIAT (TSBF); South-South initiative for training and capacity building for the management of soil biology/biodiversity; Strategies to facilititate development and adoption of integrated resource management for sustainable production and productivity improvement; The challenge program on biological nitrogen fixation (CPBNF); Living soil training for farmers: improving knowledge and skills in soil nutrition management; Do we need an inter-governmental panel on land and soil (IPLS)? Protection and sustainable use of biodiversity of soils; Cases Studies -- Plant parasitic nematodes associated with common bean (Phaseolus vulgaris L.) and integrated management approaches; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Restoring soil fertility and enhancing productivity in Indian tea plantations with earthworms and organic fertilizers; Managing termites and organic resources to improve soil productivity in the Sahel; Overview and case studies on biological nitrogen fixation: perspectives and limitations; Soil biodiversity and sustainable agriculture: an overview.
Resumo:
Nematodes from a mud-flat in the river Lynher estuary, Cornwall, U.K., have a population density ranging between 8 and 9 × 106 m−2 in the winter months, corresponding to a dry weight of 1·4 and 1·6 g m−2. They reach a peak abundance of 22·86 × 106 m−2 (3·4 g) in May. About 40 species are present, and the species composition remained seasonally stable over the period of study. Analysis of age-structure suggests that the major species have continuous asynchronous reproduction. Respiration rates of 16 species have been determined at 20 °C using Cartesian diver respirometry. For five species, respiration/body size regressions were obtained in the form log10R = log10a+b log10V, where R = respiration in nl O2 ind−1 h−1 and V = body volume in nl: Mesotheristus setosus (log10a = −0·04,b = 0·74), Sphaerolaimus hirsutus (log10a = 0·11, b = 0·68), Axonolaimus paraspinosus (log10a = 0·00, b = 0·79), Metachromadora vivipara (log10a = −0·59, b = 1·07), Praeacanthonchus punctatus (log10a = 0·00, b = 0·55). For the remaining 11 species, several animals were used in each diver and, by assuming b = 0·75, log10a′ values were calculated: Viscosia viscosa (log10a′ = 0·188), Innocuonema tentabundum (−0·012), Ptycholaimellus ponticus (−0·081), Odontophora setosa (−0·092), Sphaerolaimus balticus (−0·112), Dichromadora cephalata (−0·133), Atrochromadora microlaima (−0·142), Cylindrotheristus normandicus (−0·150), Terschellingialongicaudata (−0·170), Sabatieria pulchra (−0·197), Terschellingia communis (−0·277). These values are compared with recalculated values for other species from the literature. Annual respiration of the nematode community is 28·01 O2 m−2, equivalent to 11·2 g carbon metabolised. Community respiration is compared with figures from N. American saltmarshes. At 20 °C, a respiration of about 61 O2 m−2 year−1 g−1 wet weight of nematodes appears to be typical. Annual production is estimated to be 6·6 g C m−2. The correlation between feeding-group, body-size, habitat and the repiration rate of individual species is discussed.
Resumo:
Rhizosphere processes play a key role in nutrient cycling in terrestrial ecosystems. Plant rhizodeposits supply low-molecular weight carbon substrates to the soil microbial community, resulting in elevated levels of activity surrounding the root. Mechanistic compartmental models that aim to model carbon flux through the rhizosphere have been reviewed and areas of future research necessary to better calibrate model parameters have been identified. Incorporating the effect of variation in bacterial biomass physiology on carbon flux presents a considerable challenge to experimentalists and modellers alike due to the difficulties associated with differentiating dead from dormant cells. A number of molecular techniques that may help to distinguish between metabolic states of bacterial cells are presented. The calibration of growth, death and maintenance parameters in rhizosphere models is also discussed. A simple model of rhizosphere carbon flow has been constructed and a sensitivity analysis was carried out on the model to highlight which parameters were most influential when simulating carbon flux. It was observed that the parameters that most heavily influenced long-term carbon compartmentalisation in the rhizosphere were exudation rate and biomass yield. It was concluded that future efforts to simulate carbon flow in the rhizosphere should aim to increase ecological realism in model structure.
Resumo:
réalisé en cotutelle avec la Faculté des Sciences de Tunis, Université Tunis El Manar.
Resumo:
A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.