871 resultados para SLIP COATING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three possible contact conditions may prevail at a contact interface depending on the magnitude of normal and tangential loads, that is, stick condition, partial slip condition or gross sliding condition. Numerical techniques have been used to evaluate the stress field under partial slip and gross sliding condition. Cattaneo and Mindlin approach has been adapted to model partial slip condition. Shear strain energy density and normalized strain energy release rate have been evaluated at the surface and in the subsurface region. It is apparent from the present study that the shear strain energy density gives a fair prediction for the nucleation of damage, whereas the propagation of the crack is controlled by normalized strain energy release rate. Further, it has been observed that the intensity of damage strongly depends on coefficient of friction and contact conditions prevailing at the contact interface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M-w 8.6 and 8.2 strike-slip earthquakes that struck the northeast Indian Ocean on 11 April 2012 resulted in coseismic deformation both at near and distant sites. The slip distribution, deduced using seismic-wave analysis for the orthogonal faults that ruptured during these earthquakes, is sufficient to predict the coseismic displacements at the Global Positioning System (GPS) sites, such as NTUS, PALK, and CUSV, but fall short at four continuous sites in the Andaman Islands region. Slip modeling, for times prior to the events, suggests that the lower portion of the thrust fault beneath the Andaman Islands has been slipping at least at the rate of 40 cm/yr, in response to the 2004 Sumatra-Andaman coseismic stress change. Modeling of GPS displacements suggests that the en echelon and orthogonal fault ruptures of the 2012 intraplate oceanic earthquakes could have possibly accelerated the ongoing slow slip, along the lower portion of the thrust fault beneath the islands with a month-long slip of 4-10 cm. The misfit to the coseismic GPS displacements along the Andaman Islands could be improved with a better source model, assuming that no local process contributed to this anomaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stick-slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick-slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical properties of pure Sn and Sn-graphene composite coating have been determined and compared. Coatings were electrodeposited on mild steel substrates. Graphene was synthesized by the electrochemical exfoliation process using SO42- ion as the intercalating agent. Morphological and structural characterization results revealed a clear effect of graphene on altering the texture, grain size and morphology of the coating. Corrosion behavior was analyzed through potentiodynamic polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in case of Sn coating containing graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated from a facile, combined sol-gel spin - coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO2 with a small grain size of 18 nm. The refractive index `n' quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 angstrom. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO2 were studied by capacitance - voltage (C - V) and deep level transient spectroscopy (DLTS). The flat - band voltage (V-FB) and the density of slow interface states estimated are -0.9, -0.44 V and 5.24x10(10), 1.03x10(11) cm(-2); for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross -sections measured by DLTS are E-V + 0.30, E-C - 0.21 eV; 8.73x10(11), 6.41x10(11) eV(-1) cm(-2) and 5.8x10(-23), 8.11x10(-23) cm(2) for the NMOS and PMOS structures, respectively. A low value of interface state density in both P-and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5 wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and T-g of the DGEBA/F-AgNPs coatings increased at 1 wt % of F-AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elasto-plastic finite element method is developed to predict the residual stresses of thermal spraying coatings with functionally graded material layer. In numerical simulations, temperature sensitivity of various material constants is included and mix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.