984 resultados para SINGLE-CRYSTALLINE
Resumo:
Germanium nanowires were grown on Au coated Si substrates at 380 degrees C in a high vacuum (5 x 10(-5) Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth ratewas measured to be similar to 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis(EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It has been suggested that materials with interesting and useful bulk non-linear optical properties might result by substituting vanadium, the lightest element in the group V of periodic table, for Nb or Ta atoms along with Li and three oxygens. It is with this motivation that we have been making attempts to grow single crystals of LiNbO3 doped with various concentrations of V2O5. Unfortunately the results obtained on the ceramic samples of this material have not been very encouraging, owing to their hygroscopic nature. However, our attempts to prepare both ceramic and single-crystalline samples of potassium lithium niobate (K3Li2Nb5O15; KLN) doped V2O5 were successful. In this letter we report the preliminary results concerning our studies on the effect of V2O5 doping on the structural as well as topographic features of both ceramic and single-crystalline samples of KLN.
Resumo:
The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]
Resumo:
We present an unusual temperature dependence of hysteresis in the Lion resonant microwave absorption (NRMA) signals from superconducting thin films of YBa2Cu3O7-delta. We observe that the hysteresis increases with increase in temperature till T-c which we interpret as evidence for the presence of Bean-Livingston surface barriers (BLSB) in the single crystalline films.
Resumo:
A high-throughput screening was employed to identify new compounds in Cu(CH3COO)(2)center dot H2O-NIPA-heterocyclic ligand systems. Of the compounds identified, three compounds, Cu-3{(NO2)-C6H3-(COO)(2)}(3)(C3N6H6)] (1), Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2)}(CN4H)]center dot-(H2O) (II), and Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2}-)(CN5H2)]center dot 2(H2O) (III), have been isolated as good quality single crystals by employing conventional hydrothermal methods. Three other compounds, Cu-2{(NO2)-C6H3-(COO)(2)}-(CN4H)(H2O) (IIa), Cu-2{(NO2)-C6H3-(COO)(2)}(CN5H2) (IIIa), and Cu-2{(NO2)-C6H3-(COO)(2)}{(CN5H2)(2)}2H(2)O (IIIb), were identified by a combination of elemental analysis, thermogravimetric analysis (TGA), and IR spectroscopic studies, although their structures are yet to be determined. The single crystalline compounds were also characterized by elemental analysis, TGA, IR, UV vis, magnetic, and catalytic studies. The structures of the compounds have paddle wheel (I) and infinite Cu 0(H) Cu chains (II and HI) connected with NLPA and heterocyclic ligands forming two-(II) and three-dimensional (I and III) structures. The bound and lattice water molecules in 11 and 111 could be reversibly removed/inserted without affecting the structure. In the case of II, the removal of water gives rise to a structural transition, but the dehydrated phase reverts back to the original phase on prolonged exposure to atmospheric conditions. Magnetic studies indicate an overall antiferromagnetism in all of the compounds. Lewis acid catalytic studies indicate that compounds II and HI are active for cyanosilylation of imines.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 <
Resumo:
Transformations of the layered zinc phosphates of the compositions [C6N4H22](0.5) [Zn-2 (HPO4)(3)], I, [C3N2H12][Zn-2 (HPO4)(3)], II and [C3N2OH12][Zn-2 (HPO4)(3)], III, containing triethylenetetramine, 1,3-diaminopropane, and 1,3-diamino-2-hydroxypropane, respectively, have been investigated under different conditions. On heating in water, I transforms to a one-dimensional (1-D) ladder and a three-dimensional (3-D) structure, while II gives rise to only a two-dimensional (2-D) layered structure. In the transformation reaction of I with zinc acetate, the same ladder and 3-D structures are obtained along with a tubular layer. Under similar conditions II gives a layered structure formed by the joining of two ladder motifs. III, on the other hand, is essentially unreactive when heated with water and zinc acetate, probably because the presence of the hydroxy group in the amine which hydrogen bonds to the framework. In the presence of piperazine, I, II and III give rise to a four-membered, corner-shared linear chain which is likely to be formed via the ladder structure. In addition, 2-D and 3-D structures derived from the 1-D linear chain or ladder structures are also formed. The primary result from the study is that the layers produce 1-D ladders, which then undergo other transformations. It is noteworthy that in the various transformations carried out, most of the products are single-crystalline.
Resumo:
Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.
Resumo:
ZnO nanostructured films were deposited at room temperature on glass substrates and cotton fabrics by activated reactive evaporation in a single step without using metal catalyst or templates. Morphological observation has shown that the nanostructured film contains seaurchin-like structures, and this seaurchin containing large number of randomly grown ZnO nanoneedles. Microstructural analysis revealed the single crystalline nature of the grown nanoneedles and their growth direction was indentified to be along [0002]. PL spectrum of nanostructured films has shown a relatively weak near-band-edge emission peak at 380 nm, and a significant broad peak at 557 nm due to the oxygen vacancy-related emission. ZnO nanostructured films grown on glass substrates and cotton fabrics have shown good photocatalytic activity against rhodamine B.
Resumo:
Thin films of VO2(B), a metastable polymorph of vanadium dioxide, have been grown on glass by low-pressure metalorganic chemical vapor deposition (MOCVD). The films grown for 90 minutes have atypical microstructure, comprising micrometer-sized, island-like entities made up of numerous small, single-crystalline platelets (≅1 μm) emerging orthogonally from larger ones at the center. Microstructure evolution as a function of deposition time has been examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The metastable VO2(B) transforms to the stable rutile (R) phase at 550°C in inert ambient, which on cooling convert reversibly to M phase. Electron microscopy shows that annealing leads to the disintegration of the VO2(B) platelets into small crystallites of the rutile phase VO2(R), although the platelet morphology is retained. The magnitude of the jump in resistance at the semiconductor-to-metal, VO2(M)→VO2(R) phase transition depends on the arrangement of polycrystalline platelets in the films.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
Thin films of Bi2VO5.5 (BVO), a vanadium analog of the n = I member of the Aurivillius family, have been prepared by pulsed laser deposition. The BVO films grow along the [001] direction on LaNiO3(LNO) and YBa2Cu3O7 (YBCO) electrode buffer layers on LaA- IO3(LAO) substrates as obtained from X-ray diffraction studies. The microstructure of the films and of the interfaces within the film and between the film and the substrate were characterized using transmission electron microscopy. The in-plane epitaxial relationship of the rhombohedral LNO on perovskite LAO was [100] LNO // [100] LAO and [001] LNO // [001] LAO. High resolution lattice images showed a sharp interface between LNO and LAO. However, the LNO film is twinned with a preferred orientation along the growth direction. The BVO layer is single crystalline on both LNO/LAO and YBCO/LAO with the caxis parallel to the growth direction except for a thin layer of about 400 Å at the interface which is polycrystalline.
Resumo:
Heavily Mn-doped II-VI-V-2 semiconductors, such as CdGeP2 and ZnGeP2 have been prepared by depositing Mn on single crystalline substrate at nearly 400 T in an ultra high vacuum chamber. Well-defined ferromagnetic hysteresis with a saturation behavior appears in the magnetization curve up to above room temperature. The chemical states of the ZDGeP(2):Mn interface has been clarified by a careful in situ photoemission spectroscopy. The as-prepared surface consists of Ge-rich, metallic Mn compound. In and below the sub-surface region, dilute divalent Mn species as precursors of the DMS phase exist. No MnP phase was observed at any stage of the depth profile. Theoretical band-calculation suggests that the system with vacancies (Cd, V-c, Mn)GeP2 or a non-stoichiometric (Cd, Ge, Mn)GeP2 are ferromagnetic and energetically stable although ferromagnetism is not stable in a stoichiometric compound (Cd, Mn)GeP2. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We report the shape evolution of free gold agglomerates with different morphologies that transform to ellipsoidal and then to spherical shapes during the heating cycle. The shape transformation is associated with a structural transition from polycrystalline to single crystalline. The structural transition temperature is shown to be dependent on the final size of the particles and not on the initial morphologies of the agglomerates. It is also shown that the transition occurs well below the melting temperature which is in contrast with the melt-freeze process reported in the literature.