995 resultados para SI NANOWIRES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germanium was of great interest in the 1950’s when it was used for the first transistor device. However, due to the water soluble and unstable oxide it was surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate with silicon (Si) to continue the trend of Moore’s law. Germanium has better intrinsic mobilities than silicon and is also silicon fab compatible so it would be an ideal material choice to integrate into silicon-based technologies. The progression towards nanoelectronics requires a lot of in depth studies. Dynamic TEM studies allow observations of reactions to allow a better understanding of mechanisms and how an external stimulus may affect a material/structure. This thesis details in situ TEM experiments to investigate some essential processes for germanium nanowire (NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact formation. Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor (namely silicon and germanium) nanostructures. The areas included are nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, batteries and strain. Chapter 2 details the study of ion irradiation and the damage incurred in germanium nanowires. An experimental set-up is described to allow for concurrent observation in the TEM of a nanowire following sequential ion implantation steps. Grown nanowires were deposited on a FIB labelled SiN membrane grid which facilitated HRTEM imaging and facile navigation to a specific nanowire. Cross sections of irradiated nanowires were also performed to evaluate the damage across the nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to study the effect of beam energy on nanowires of varied diameters. The results on nanowires were also compared to the damage profile in bulk germanium with both 30 kV and 5 kV ion beam energies. Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion irradiation. In situ thermal annealing experiments were conducted to observe the recrystallization of the nanowires. A method to promote solid phase epitaxial growth is investigated by irradiating only small areas of a nanowire to maintain a seed from which the epitaxial growth can initiate. It was also found that strain in the nanowire greatly effects defect formation and random nucleation and growth. To obtain full recovery of the crystal structure of a nanowire, a stable support which reduces strain in the nanowire is essential as well as containing a seed from which solid phase epitaxial growth can initiate. Chapter 4 details the study of nickel germanide formation in germanium nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped germanium nanopillars were extracted in FIB cross sections and annealed in situ to observe the germanide formation. Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook on the future of germanium nanowire studies to facilitate their future incorporation into nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using –H, –NH2 and –OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the –NH2 and –OH terminations compared to the –H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with –NH2 or –OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial organization of Ge islands, grown by physical vapor deposition, on prepatterned Si(001) substrates has been investigated. The substrates were patterned prior to Ge deposition by nanoindentation. Characterization of Ge dots is performed by atomic force microscopy and scanning electron microscopy. The nanoindents act as trapping sites, allowing ripening of Ge islands at those locations during subsequent deposition and diffusion of Ge on the surface. The results show that island ordering is intrinsically linked to the nucleation and growth at indented sites and it strongly depends on pattern parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the molecular dynamics simulation, plastic deformation mechanisms associated with the zigzag stress curves in perfect and surface defected copper nanowires under uniaxial tension are studied. In our previous study, it has found that the surface defect exerts larger influence than the centro-plane defect, and the 45o surface defect appears as the most influential surface defect. Hence, in this paper, the nanowire with a 45o surface defect is chosen to investigate the defect’s effect to the plastic deformation mechanism of nanowires. We find that during the plastic deformation of both perfect and defected nanowires, decrease regions of the stress curve are accompanied with stacking faults generation and migration activities, but during stress increase, the structure of the nanowire appears almost unchanged. We also observe that surface defects have obvious influence on the nanowire’s plastic deformation mechanisms. In particular, only two sets of slip planes are found to be active and twins are also observed in the defected nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the production of free-standing thin sheets made up of mass-produced ZnO nanowires and the application of these nanowire sheets for the fabrication of ZnO/organic hybrid light-emitting diodes in the manner of assembly. Different p-type organic semiconductors are used to form heterojunctions with the ZnO nanowire film. Electroluminescence measurements of the devices show UV and visible emissions. Identical strong red emission is observed independent of the organic semiconductor materials used in this work. The visible emissions corresponding to the electron transition between defect levels within the energy bandgap of ZnO are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have grown defect-rich ZnO nanowires on a large scale by the vapour phase reaction method without using any metal catalyst and vacuum system. The defects, including zinc vacancies, oxygen interstitials and oxygen antisites, are related to the excess of oxygen in ZnO nanowires and are controllable. The nanowires having high excess of oxygen exhibit a brown-colour photoluminescence, due to the dominant emission band composed by violet, blue and green emissions. Those having more balanced Zn and O show a dominant green emission, giving rise to a green colour under UV light illumination. By O2-annealing treatment the violet luminescence after the band-edge emission UV peak can be enhanced for as-grown nanowires. However, the green emission shows different changing trends under O2-annealing treatment, associated with the excess of oxygen in the nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bending and bundling was observed from vertically aligned arrays of ZnO nanowires with flat (0001) top surfaces, which were synthesized using a vapor-phase method without metal catalysts. Sufficient evidence was found to exclude electron-beam bombardment during scanning electron microscopy as a cause for bending and bundling. We attribute the bending and bundling to electrostatic interactions due to charged (0001) polar surfaces, and also discussed the threshold surface charge densities for the bending and bundling based on a simple cantilever-bending model. Some growth features were indicative of the operation of electrostatic interactions during the growth.