999 resultados para SF6 plasma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma plumes with exotically segmented channel structure and plasma bullet propagation are produced in atmospheric plasma jets. This is achieved by tailoring interruptions of a continuous DC power supply over the time scales of lifetimes of residual electrons produced by the preceding discharge phase. These phenomena are explained by studying the plasma dynamics using nanosecond-precision imaging. One of the plumes is produced using 2-10μs interruptions in the 8kV DC voltage and features a still bright channel from which a propagating bullet detaches. A shorter interruption of 900ns produces a plume with the additional long conducting dark channel between the jet nozzle and the bright area. The bullet size, formation dynamics, and propagation speed and distance can be effectively controlled. This may lead to micrometer-and nanosecond-precision delivery of quantized plasma bits, warranted for next-generation health, materials, and device technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of surrounding gases on the propagation of room-temperature atmospheric-pressure plasma jets are reported. A highly unusual feather-like plasma plume is observed only when N2 is used as surrounding gas. The He concentration on the axis at the starting point of the feather-like plume is ∼0.85 of the maximum value and is independent on the He flow rates. High-speed optical imaging reveals that dim diffuse plasmas emerge just behind the bright head of the plasma bullet at the starting point of the feather-like plume. These results help tailoring surface exposure in emerging applications of plasma jets in medicine and nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmas, the 4th state of matter, uniformly transform natural precursors with different chemical composition in solid, liquid, and gas states into the same functional vertical graphenes in a single-step process within a few minutes. Functional vertical graphenes show reliable biosensing properties, strong binding with proteins, and improved adhesion to substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10^5 CH3+ ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we improve the insulation performance of polymeric nano-dielectrics by using plasma pre-treatment on the filled nanoparticles. Non-equilibrium atmospheric-pressure plasma is employed to modify a commercial type of silane-coated SiO2 nanoparticles. The treated nanoparticles and the synthesized epoxy-based nanocomposites are characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The plasma-treated SiO2 nanoparticles can disperse uniformly and form strong covalent bonds with the molecules of the polymer matrix. Moreover, the electrical insulation properties of the synthesized nanocomposites are investigated. Results show that the nanocomposites with plasma-treated SiO2 nanoparticles obtain improved dielectric breakdown strength and extended endurance under intense electrical ageing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, atmospheric-pressure plasmas were applied to modify the surface of silane-coated silica nanoparticles. Subsequently nanocomposites were synthesized by incorporating plasma-treated nanoparticles into an epoxy resin matrix. Electrical testing showed that such novel dielectric materials obtained high partial discharge resistance, high dielectric breakdown strength, and enhanced endurance under highly stressed electric field. Through spectroscopic and microscopic analysis, we found surface groups of nanoparticles were activated and radicals were created after the plasma treatment. Moreover, a uniform dispersion of nanoparticles in nanocomposites was observed. It was expected that the improved dielectric performance of the nanocomposites can attribute to stronger chemical bonds formed between surface groups of plasma-treated nanoparticles and molecules in the matrix. This simple yet effective and environmentally friendly approach aims to synthesize the next generation of high-performance nanocomposite dielectric insulation materials for applications in high-voltage power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports show that cold atmospheric-pressure plasmas can induce death of cancer cells in several minutes. However, very little is presently known about the mechanism of the plasma-induced death of cancer cells. In this paper, an atmospheric-pressure plasma plume is used to treat HepG2 cells. The experimental results show that the plasma can effectively control the intracellular concentrations of ROS, NO and lipid peroxide. It is shown that these concentrations are directly related to the mechanism of the HepG2 death, which involves several stages. First, the plasma generates NO species, which increases the NO concentration in the extracellular medium. Second, the intracellular NO concentration is increased due to the NO diffusion from the medium. Third, an increase in the intracellular NO concentration leads to the increase of the intracellular ROS concentration. Fourth, the increased oxidative stress results in more effective lipid peroxidation and consequently, cell injury. The combined action of NO, ROS and lipid peroxide species eventually results in the HepG2 cell death. The mechanism of death of human hepatocellular carcinoma cells (HepG2) induced by atmospheric-pressure room-temperature plasma, related to the plasma-controlled intracellular concentrations of reactive oxygen species (ROS), nitric oxide (NO) and lipid peroxide is revealed. Only 34.75 s are required to reduce the number of the viable HepG2 cells by 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells (SC) are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM) to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.