82 resultados para SCINTILLATOR
Resumo:
In the present work, the elastic scattering of fast neutrons from iron and concrete samples were studied at incident neutron energies of 14.0 and 14.4 Mev, using a neutron spectrometer based on the associated particle time-of-flight technique. These samples were chosen because of their importance in the design of fusion reactor shielding and construction. Using the S.A.M.E.S. accelerator and the 3 M v Dynamitron accelerator at the Radiation Centre, 14.0 and 14.4 Mev neutrons were produced by the T(d, n)4He reaction at incident deuteron energies of 140 keV and 900 keV mass III ions respectively. The time of origin of the neutron was determined by detecting the associated alpha particles. The samples used were extended flat plates of thicknesses up to 1.73 mean free paths for iron and 2.3 mean free paths for concrete. The associated alpha particles and fast neutrons were detected by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The differential neutron elastic scattering cross-sections were measured for 14 Mev neutrons in various thicknesses of iron and concrete in the angular range from zero to 90°. In addition, the angular distributions of 14.4 Mev neutrons after passing through extended samples of iron were measured at several scattering angles in the same angular range. The measurements obtained for the thin sample of iron were compared with the results of Coon et al. The differential cross-sections for the thin iron sample were also analyzed on the optical model using the computer code RAROMP. For the concrete sample, the angular distribution of the thin sample was compared with the cross-sections calculated from the major constituent elements of concrete, and with the predicted values of the optical model for those elements. No published data could be found to compare with the results of the concrete differential cross-sections. In the case of thick samples of iron and concrete, the number of scattered neutrons were compared with a phenomological calculation based on the continuous slowing down model. The variation of measured cross-sections with sample thickness were found to follow the empirical relation σ = σ0 eαx. By using the universal constant "K", good fits were obtained to the experimental data. In parallel with the work at 14.0 and 14.4 Mev, an associated particle time-of-flight spectrometer was investigated which used the 2H(d,n)3He reaction for 3.02 Mev neutron energy at the incident deuteron energy of 1 Mev.
Resumo:
The control of radioactive backgrounds will be key in the search for neutrinoless double beta decay at the SNO+ experiment. Several aspects of the SNO+ back- grounds have been studied. The SNO+ tellurium purification process may require ultra low background ethanol as a reagent. A low background assay technique for ethanol was developed and used to identify a source of ethanol with measured 238U and 232Th concentrations below 2.8 10^-13 g/g and 10^-14 g/g respectively. It was also determined that at least 99:997% of the ethanol can be removed from the purified tellurium using forced air ow in order to reduce 14C contamination. In addition, a quality-control technique using an oxygen sensor was studied to monitor 222Rn contamination due to air leaking into the SNO+ scintillator during transport. The expected sensitivity of the technique is 0.1mBq/L or better depending on the oxygen sensor used. Finally, the dependence of SNO+ neutrinoless double beta decay sensitivity on internal background levels was studied using Monte Carlo simulation. The half-life limit to neutrinoless double beta decay of 130Te after 3 years of operation was found to be 4.8 1025 years under default conditions.
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.
Resumo:
The Solar Intensity X-ray and particle Spectrometer (SIXS) on board BepiColombo's Mercury Planetary Orbiter (MPO) will study solar energetic particles moving towards Mercury and solar X-rays on the dayside of Mercury. The SIXS instrument consists of two detector sub-systems; X-ray detector SIXS-X and particle detector SIXS-P. The SIXS-P subdetector will detect solar energetic electrons and protons in a broad energy range using a particle telescope approach with five outer Si detectors around a central CsI(Tl) scintillator. The measurements made by the SIXS instrument are necessary for other instruments on board the spacecraft. SIXS data will be used to study the Solar X-ray corona, solar flares, solar energetic particles, the Hermean magnetosphere, and solar eruptions. The SIXS-P detector was calibrated by comparing experimental measurement data from the instrument with Geant4 simulation data. Calibration curves were produced for the different side detectors and the core scintillator for electrons and protons, respectively. The side detector energy response was found to be linear for both electrons and protons. The core scintillator energy response to protons was found to be non-linear. The core scintillator calibration for electrons was omitted due to insufficient experimental data. The electron and proton acceptance of the SIXS-P detector was determined with Geant4 simulations. Electron and proton energy channels are clean in the main energy range of the instrument. At higher energies, protons and electrons produce non-ideal response in the energy channels. Due to the limited bandwidth of the spacecraft's telemetry, the particle measurements made by SIXS-P have to be pre-processed in the data processing unit of the SIXS instrument. A lookup table was created for the pre-processing of data with Geant4 simulations, and the ability of the lookup table to provide spectral information from a simulated electron event was analysed. The lookup table produces clean electron and proton channels and is able to separate protons and electrons. Based on a simulated solar energetic electron event, the incident electron spectrum cannot be determined from channel particle counts with a standard analysis method.
Resumo:
Dissertação mest. em Imagiologia Médica, Faculdade de Ciências e Tecnologia da Univ. do Algarve, 2006
Resumo:
Résumé : Les performances de détecteurs à scintillation, composés d’un cristal scintillateur couplé à un photodétecteur, dépendent de façon critique de l’efficacité de la collecte et de l’extraction des photons de scintillation du cristal vers le capteur. Dans les systèmes d’imagerie hautement pixellisés (e.g. TEP, TDM), les scintillateurs doivent être arrangés en matrices compactes avec des facteurs de forme défavorables pour le transport des photons, au détriment des performances du détecteur. Le but du projet est d’optimiser les performances de ces détecteurs pixels par l'identification des sources de pertes de lumière liées aux caractéristiques spectrales, spatiales et angulaires des photons de scintillation incidents sur les faces des scintillateurs. De telles informations acquises par simulation Monte Carlo permettent une pondération adéquate pour l'évaluation de gains atteignables par des méthodes de structuration du scintillateur visant à une extraction de lumière améliorée vers le photodétecteur. Un plan factoriel a permis d'évaluer la magnitude de paramètres affectant la collecte de lumière, notamment l'absorption des matériaux adhésifs assurant l'intégrité matricielle des cristaux ainsi que la performance optique de réflecteurs, tous deux ayant un impact considérable sur le rendement lumineux. D'ailleurs, un réflecteur abondamment utilisé en raison de ses performances optiques exceptionnelles a été caractérisé dans des conditions davantage réalistes par rapport à une immersion dans l'air, où sa réflectivité est toujours rapportée. Une importante perte de réflectivité lorsqu'il est inséré au sein de matrices de scintillateurs a été mise en évidence par simulations puis confirmée expérimentalement. Ceci explique donc les hauts taux de diaphonie observés en plus d'ouvrir la voie à des méthodes d'assemblage en matrices limitant ou tirant profit, selon les applications, de cette transparence insoupçonnée.
Resumo:
In this thesis work, a cosmic-ray telescope was set up in the INFN laboratories in Bologna using smaller size replicas of CMS Drift Tubes chambers, called MiniDTs, to test and develop new electronics for the CMS Phase-2 upgrade. The MiniDTs were assembled in INFN National Laboratory in Legnaro, Italy. Scintillator tiles complete the telescope, providing a signal independent of the MiniDTs for offline analysis. The telescope readout is a test system for the CMS Phase-2 upgrade data acquisition design. The readout is based on the early prototype of a radiation-hard FPGA-based board developed for the High Luminosity LHC CMS upgrade, called On Board electronics for Drift Tubes. Once the set-up was operational, we developed an online monitor to display in real-time the most important observables to check the quality of the data acquisition. We performed an offline analysis of the collected data using a custom version of CMS software tools, which allowed us to estimate the time pedestal and drift velocity in each chamber, evaluate the efficiency of the different DT cells, and measure the space and time resolution of the telescope system.