966 resultados para SCHRODINGER EQUATION
Resumo:
We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.
Resumo:
By using phi-mapping topological current theory and gauge potential decomposition, we discuss the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new concrete self-dual equation with a 6 function. For the SU(3) case, we obtain a new self-duality solution and find the relationship between the soliton solution and topological number which is determined by the Hopf index and Brouwer degree of phi-mapping. In our solution, the flux of this soliton is naturally quantized.
Resumo:
The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.
Resumo:
Intense-field ionization of the hydrogen molecular ion by linearly polarized light is modelled by direct solution of the fixed-nuclei time-dependent Schrodinger equation and compared with recent experiments. Parallel transitions are calculated using algorithms which exploit massively parallel computers. We identify and calculate dynamic tunnelling ionization resonances that depend on laser wavelength and intensity, and molecular bond length. Results for lambda similar to 1064 nm are consistent with static tunnelling ionization. At shorter wavelengths lambda similar to 790 nm large dynamic corrections are observed. The results agree very well with recent experimental measurements of the ion spectra. Our results reproduce the single peak resonance and provide accurate ionization rate estimates at high intensities. At lower intensities our results confirm a double peak in the ionization rate as the bond length varies.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
Electron energy distributions of singly and doubly ionized helium in an intense 390 nm laser field have been measured at two intensities (0.8 PW/cm(2) and 1.1 PW/cm(2), where PW equivalent to 10(15) W/cm(2)). Numerical solutions of the full-dimensional time-dependent helium Schrodinger equation show excellent agreement with the experimental measurements. The high-energy portion of the two-electron energy distributions reveals an unexpected 5U(p) cutoff for the double ionization (DI) process and leads to a proposed model for DI below the quasiclassical threshold.
Resumo:
The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We set out aspects of a numerical algorithm used in solving the full-dimensionality time-dependent Schrodinger equation describing the electronic motion of the hydrogen molecular ion driven by an intense, linearly polarized laser pulse aligned along the molecular axis. This algorithm has been implemented within the fixed inter-nuclear separation approximation in a parallel computer code, a brief summary of which is given. Ionization rates are calculated and compared with results from other methods, notably the time-independent Floquet method. Our results compare very favourably with the precise predictions of the Floquet method, although there is some disagreement with other wavepacket calculations. Visualizations of the electron dynamics are also presented in which electron rescattering is observed.
Resumo:
We report calculations of double ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two electron time-dependent Schr¨odinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly-ionizing wavepackets from different recollision events populate the same spatial hemisphere.
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot electrons, and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been considered. The stability analysis, based on a nonlinear Schrodinger equation, reveals that the EAW may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Different types of localized EA excitations are shown to exist.
Resumo:
The linear and nonlinear properties of the Rao-dust-magnetohydrodynamic (R-D-MHD) waves in a dusty magnetoplasma are studied. By employing the inertialess electron equation of motion, inertial ion equation of motion, Ampere's law, Faraday's law, and the continuity equation in a plasma with immobile charged dust grains, the linear and nonlinear propagation of two-dimensional R-D-MHD waves are investigated. In the linear regime, the existence of immobile dust grains produces the Rao cutoff frequency, which is proportional to the dust charge density and the ion gyrofrequency. On the other hand, the dynamics of amplitude modulated R-D-MHD waves is governed by the cubic nonlinear Schrodinger equation. The latter has been derived by using the reductive perturbation technique and the two-timescale analysis which accounts for the harmonic generation nonlinearity in plasmas. The stability of the modulated wave envelope against non-resonant perturbations is studied. Finally, the possibility of localized envelope excitations is discussed. (C) 2004 American Institute of Physics.
Resumo:
The parametric interaction between large amplitude whistlers and ponderomotively driven quasistationary density perturbations in plasmas is considered. A cubic nonlinear Schrodinger equation is derived and then solved analytically to show the occurrence of modulational instability as well as the existence of bright and dark envelope solitons, which are referred to as whistlerons. Explicit whistleron profiles are presented and the relevance to space and laboratory plasmas is discussed. (C) 2005 American Institute of Physics.
Resumo:
The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.
Resumo:
The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.