952 resultados para SCGE (Spatial Computable General Equilibrium) model
Resumo:
We propose a way to incorporate NTBs for the four workhorse models of the modern trade literature in computable general equilibrium models (CGEs). CGE models feature intermediate linkages and thus allow us to study global value chains (GVCs). We show that the Ethier-Krugman monopolistic competition model, the Melitz firm heterogeneity model and the Eaton and Kortum model can be defined as an Armington model with generalized marginal costs, generalized trade costs and a demand externality. As already known in the literature in both the Ethier-Krugman model and the Melitz model generalized marginal costs are a function of the amount of factor input bundles. In the Melitz model generalized marginal costs are also a function of the price of the factor input bundles. Lower factor prices raise the number of firms that can enter the market profitably (extensive margin), reducing generalized marginal costs of a representative firm. For the same reason the Melitz model features a demand externality: in a larger market more firms can enter. We implement the different models in a CGE setting with multiple sectors, intermediate linkages, non-homothetic preferences and detailed data on trade costs. We find the largest welfare effects from trade cost reductions in the Melitz model. We also employ the Melitz model to mimic changes in Non tariff Barriers (NTBs) with a fixed cost-character by analysing the effect of changes in fixed trade costs. While we work here with a model calibrated to the GTAP database, the methods developed can also be applied to CGE models based on the WIOD database.
Resumo:
The gravity model, entropy model, potential type model and others like these have been adopted to formulate interregional trade coefficients under the framework of Multi-Regional I-O (MRIO) analysis. Since most of these models are based upon analogies in physics or on statistical principles, they do not provide a theoretical explanation from the view of a firm's or individual's rational and deterministic decision making. In this paper, according to the deterministic choice theory, not only is an alternative formulation of the trade coefficients presented, but also a discussion of an appropriate definition for purchasing prices indices. Since this formulation is consistent with the MRIO system, it can be employed as a useful model-building tool in multi-regional models such as the spatial CGE model.
Resumo:
This paper explores the interaction between upstream firms and downstream firms in a two-region general equilibrium model. In many countries, lower tariff rates are set for intermediate manufactured goods and higher tariff rates are set for final manufactured goods. The derived results imply that such settings of tariff rates tend to preserve a symmetric spread of upstream and downstream firms, and continuing tariff reduction may cause core-periphery structures. In the case in which the circular causality between upstream and downstream firms is focused as agglomeration forces, the present model is fully solved. Thus, we find that (1) the present model displays, at most, three interior steady states, (2) when the asymmetric steady-states exist, they are unstable and (3) location displays hysteresis when the transport costs of intermediate manufactured goods are sufficiently high.
Resumo:
This paper uses a GVC (Global Value Chain)-based CGE model to assess the impact of TTIP between the U.S. and the EU on their main trading partners who are mainly engaged at the low end in the division system of global value chains, such as BRICS countries. The simulation results indicate that in general the TTIP would positively impact global trade and economies due to the reduction of both tariff and non-tariff barriers. With great increases in the US–EU bilateral trade, significant economic gains for the U.S. and the EU can be expected. For most BRICS countries, the aggregate exports and GDP suffer small negative impacts from the TTIP, except Brazil, but the inter-country trade within BRICS economies increases due to the substitution effect between the US–EU trade and the imports from BRICS countries when the TTIP commences.
Resumo:
This paper describes how factor markets are presented in applied equilibrium models and how we plan to improve and to extend the presentation of factor markets in two specific models: MAGNET and ESIM. We do not argue that partial equilibrium models should become more ‘general’ in the sense of integrating all factor markets, but that the shift of agricultural income policies to decoupled payments linked to land in the EU necessitates the inclusion of land markets in policy-relevant modelling tools. To this end, this paper outlines options to integrate land markets in partial equilibrium models. A special feature of general equilibrium models is the inclusion of fully integrated factor markets in the system of equations to describe the functionality of a single country or a group of countries. Thus, this paper focuses on the implementation and improved representation of agricultural factor markets (land, labour and capital) in computable general equilibrium (CGE) models. This paper outlines the presentation of factor markets with an overview of currently applied CGE models and describes selected options to improve and extend the current factor market modelling in the MAGNET model, which also uses the results and empirical findings of our partners in this FP project.
Resumo:
János Kornai’s DRSE theory (Kornai, 2014) follows the ex post model philosophy which radically rejects the ex ante set of conditions laid down by the dominant neoclassical school and the stringent limits of equilibrium, and defines its own premises for the functioning of capitalist economy. In other words, the DRSE theory represents an extremely novel trend among the various schools of economics. The theory is still only a verbal model with the following supporting pillars as the immanent features of the capitalist system: dynamism, rivalry and the surplus economy. (The English name of the theory uses the initial letters of the terms Dynamism, Rivalry, Surplus Economy). The dominance of the surplus economy, that is, oversupply is replaced by monopolistic competition, uncertainty over the volume of demand, Schumpeterian innovation, dynamism, technological progress, creative destruction and increasing return to scale with rivalry between producers and service providers for markets. This paper aims to examine whether the DRSE theory can be formulated as a formal mathematical model. We have chosen a special route to do this: first we explore the unreal ex ante assumptions of general equilibrium theory (Walras, 1874; Neumann, 1945), and then we establish some of the possible connections between the premises of DRSE, which include the crucial condition that just like in biological evolution, there is no fixed steady state in the evolutionary processes of market economy, not even as a point of reference. General equilibrium theory and DRSE theory are compared in the focus of Schumpeterian evolutionary economics.
Resumo:
This paper provides a new reading of a classical economic relation: the short-run Phillips curve. Our point is that, when dealing with inflation and unemployment, policy-making can be understood as a multicriteria decisionmaking problem. Hence, we use so-called multiobjective programming in connection with a computable general equilibrium (CGE) model to determine the combinations of policy instruments that provide efficient combinations of inflation and unemployment. This approach results in an alternative version of the Phillips curve labelled as efficient Phillips curve. Our aim is to present an application of CGE models to a new area of research that can be especially useful when addressing policy exercises with real data. We apply our methodological proposal within a particular regional economy, Andalusia, in the south of Spain. This tool can give some keys for policy advice and policy implementation in the fight against unemployment and inflation.
Resumo:
Intermediate-complexity general circulation models are a fundamental tool to investigate the role of internal and external variability within the general circulation of the atmosphere and ocean. The model used in this thesis is an intermediate complexity atmospheric general circulation model (SPEEDY) coupled to a state-of-the-art modelling framework for the ocean (NEMO). We assess to which extent the model allows a realistic simulation of the most prominent natural mode of variability at interannual time scales: El-Niño Southern Oscillation (ENSO). To a good approximation, the model represents the ENSO-induced Sea Surface Temperature (SST) pattern in the equatorial Pacific, despite a cold tongue-like bias. The model underestimates (overestimates) the typical ENSO spatial variability during the winter (summer) seasons. The mid-latitude response to ENSO reveals that the typical poleward stationary Rossby wave train is reasonably well represented. The spectral decomposition of ENSO features a spectrum that lacks periodicity at high frequencies and is overly periodic at interannual timescales. We then implemented an idealised transient mean state change in the SPEEDY model. A warmer climate is simulated by an alteration of the parametrized radiative fluxes that corresponds to doubled carbon dioxide absorptivity. Results indicate that the globally averaged surface air temperature increases of 0.76 K. Regionally, the induced signal on the SST field features a significant warming over the central-western Pacific and an El-Niño-like warming in the subtropics. In general, the model features a weakening of the tropical Walker circulation and a poleward expansion of the local Hadley cell. This response is also detected in a poleward rearrangement of the tropical convective rainfall pattern. The model setting that has been here implemented provides a valid theoretical support for future studies on climate sensitivity and forced modes of variability under mean state changes.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.
Resumo:
A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics
Resumo:
We study markets where the characteristics or decisions of certain agents are relevant but not known to their trading partners. Assuming exclusive transactions, the environment is described as a continuum economy with indivisible commodities. We characterize incentive efficient allocations as solutions to linear programming problems and appeal to duality theory to demonstrate the generic existence of external effects in these markets. Because under certain conditions such effects may generate non-convexities, randomization emerges as a theoretic possibility. In characterizing market equilibria we show that, consistently with the personalized nature of transactions, prices are generally non-linear in the underlying consumption. On the other hand, external effects may have critical implications for market efficiency. With adverse selection, in fact, cross-subsidization across agents with different private information may be necessary for optimality, and so, the market need not even achieve an incentive efficient allocation. In contrast, for the case of a single commodity, we find that when informational asymmetries arise after the trading period (e.g. moral hazard; ex post hidden types) external effects are fully internalized at a market equilibrium.
Resumo:
In this paper we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish oil supply sector. This ‘disinvestment effect’ acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production.
Resumo:
The application of multi-region environmental input-output (IO) analysis to the problem of accounting for emissions generation (and/or resource use) under different accounting principles has become increasingly common in the ecological and environmental economics literature in particular, with applications at the international and interregional subnational level. However, while environmental IO analysis is invaluable in accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. Where analysis of marginal changes in activity is required, extension from an IO accounting framework to a more flexible interregional computable general equilibrium (CGE) approach, where behavioural relationships can be modelled in a more realistic and theory-consistent manner, is appropriate. Our argument is illustrated by comparing the results of introducing a positive demand stimulus in the UK economy using IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels effect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
This paper investigates the impact of a balanced budget fiscal policy expansion in a regional context within a numerical dynamic general equilibrium model. We take Scotland as an example where, recently, there has been extensive debate on greater fiscal autonomy. In response to a balanced budget fiscal expansion the model suggests that: an increase in current government purchase in goods and services has negative multiplier effects only if the elasticity of substitution between private and public consumption is high enough to move downward the marginal utility of private consumers; public capital expenditure crowds in consumption and investment even with a high level of congestion; but crowding out effects might arise in the short-run if agents are myopic.