464 resultados para Sílica mesoporosa


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As características estruturais de sonogéis obtidos a partir da hidrólise ácida do TEOS estimulada por ultrasom foram estudadas por espalhamento de raios-x a baixo ângulo (SAXS). O estudo inclui: i) o processo de agregação em diferentes temperaturas; ii) o envelhecimento dos géis úmidos na fase líquida de preparação e depois da troca da fase líquida por álcool e acetona; iii) a secagem dos géis; iv) a estrutural evolução de xerogéis e aerogéis com o tratamento térmico até 1100 oC; e v) um estudo comparativo usando SAXS e adsorção de nitrogênio na caracterização de aerogéis e xerogéis... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicosis, a common type of pneumoconiosis, is an occupational lung disease caused by inhalation of silica dust often with mining activity and thus reaches the miners. The fine and ultrafine silica particles deposited in the alveolar epithelium may lead to the development of progressive massive fibrosis. An increased reactive oxygen species (ROS) production has been proposed to explain the mechanism for induction of pulmonary fibrosis in silicosis. In this situation, alveolar macrophages are activated to phagocytes silica particles deposited in the alveoli. The activated macrophages secrete large amounts of ROS that in turn induce synthesis of fibrotic factors. In addition, the activity of antioxidant enzymes is impaired, which results in increased lipid peroxidation, as well as generating a local inflammatory process. Diffuse pulmonary fibrosis progresses with interstitial collagen deposition. Interstitial collagen overlies small pulmonary arteries and arterioles and thus it is associated with pulmonary hypertension in pulmonary fibrotic diseases. In addition, cytokines and silica particles passing through the respiratory membrane can reach the bloodstream. In this context, the increase in the generation of ROS in the circulation may lead to a reduction in the bioavailability of nitric oxide, an important endothelium-derived relaxing factor. A deficiency in the nitric oxide bioavailability can result in vascular endothelial dysfunction. Moreover, pro-inflammatory cytokines could contribute to the impairment of endothelial function. In the airways, pro-inflammatory cytokines can reduce the smooth muscle responsiveness to β- adrenergic agonists as isoproterenol. Thus, the aim of this study was to evaluate the effect of silica dust instillation in the function of the pulmonary artery, aorta and trachea of rats with acute silicosis. For this purpose, male Wistar rats were anesthetized... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to study the structural characteristics of silica gels obtained from the acid hydrolysis of tetraethoxysilane (TEOS) in water solutions with different concentrations of sodium dodecyl sulfate (SDS). The structural characteristics were studied in stages ranging from the wet gel to the dry stages of the gels (aerogels and xerogels). Aerogels were obtained by ambient pressure drying (APD) after silylation process using trimethylchlorosilane (TMCS) as silylating agent. Xerogels were obtained by conventional evaporating the liquid phase from non silylated gels. The samples were characterized by nitrogen adsorption and small angle X-ray scattering (SAXS). The structure of the wet gels and of the aerogels prepared with the surfactant exhibited characteristics of mass-fractal structures with fractal dimension D in the range 2.1-2.2 for the wet gels and 2.3-2.4 for the aerogels. The characteristic size  of the fractal domain reduces while the size a0 of the primary silica particle composing the fractal structure increases with the drying of the gels, in a process in which share of the porosity is eliminated. Aerogels exhibited typical values for the specific surface of 900 m2g-1 and of 3.5 cm3.g-1 for the total pore volume. These values are correspondingly comparable to those of the aerogels prepared by supercritical drying, since the silylation process replaces hydrophilic –OH groups by hydrophobic –Si-R3 ones, inhibiting the porosity elimination on drying. The silica particle size also increases lightly with the silylation because the attachment of the –Si-R3 groups on the silica surface. The pore size distribution curves of the aerogels are similar for all samples exhibiting a maximum in around 40 nm, independent the concentration of surfactant. This suggests that the characteristic size of 40 nm is due to the association of surfactant micelles... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work the thermal characteristics of gels and xerogels of Silica/organic hybrids derived from different concentrations of GPTS-TEOS were investigated by thermal analysis (TG, DTA, and DSC). The preparation of gels of the Silica/organic hybrid matrix was held through the sol-gel process, consisting by the hydrolysis of alkoxides GPTS and TEOS in proportion (1:1) and (1:2) that was promoted in acidic conditions under reflux and stirring at 80oC/2h, producing the matrix in the colloidal state (sol). Gels were prepared by addition of NH4OH to the sol, promoting gelation of sol in sealed plastics containers. Part of the gels samples was analyzed by TG, DTS and DSC techniques in order to characterize water loss and degradation of the polymeric “epoxy” groups present in the structure of the silica derived from the GPTS alkoxide. Another set of samples was dried at 80oC/48h to obtain xerogels (dried gels) and analyzed by the same techniques. We obtained the characteristics temperatures of the matrix by the techniques DTA, DSC and TG, under measurements of thermal analysis until 800oC and 600oC in case of DSC. By thermal analysis (TG, DTA, and DSC) the main endothermic events (loss of water, melting, pyrolysis) and exothermic events (burning of the polymer) of the GPTS-TEOS matrix were determined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel process is a technique based on the hydrolysis and polycondensation of metal alkoxides have been investigated as an alternative for the preparation of vitreous or glassceramic materials, for allowing the obtaining of high-purity materials at low temperatures, and to obtain hybrid materials with different compositions. When ORMOSILs are doped with nanoparticles, are called nanocomposites, and its functionality arises when electrons confined in scale three-dimensional structures near zero are excited. In principle, such materials exhibit discrete energy level, with peaks in the absorption spectrum. Therefore, the glasses doped semiconductor nanocrystals are important candidates for the preparation of optical filters with sharp cut-off, and are being exploited commercially for coloring glasses. This study evaluates the optical properties presented by hybrid films of silica doped with copper nanoparticles. The matrix was prepared using the alkoxides 3-glycidoxypropyltrimethoxysilane (GPTS) and tetraethylorthosilicate (TEOS) doped with Cu2O and hydrolyzed under reflux conditions in two different acidic conditions (HCl and HBr). After thermal treatment at temperatures between 100 °C and 170 °C and/or under the action of commercial black light radiation, CuCl and CuBr present in the hybrid film are transformed into nanoparticles of CuCl or CuBr. The UV-VIS absorption identified the absorption bands, and its variation