996 resultados para Runoff -- Queensland, Central


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Central Highlands region has a unique climate that presents both challenges and novel farming systems opportunities for cotton production. We have been re-examining the Emerald climate in a bid to identify opportunities that might enable the production of more consistent cotton yields and quality in what can be a highly variable climate. A detailed climatic analysis identified that spring and early summer is the most optimal period for boll growth and maturation. However, to unlock this potential requires unseasonal winter sowing that is 4 to 6 weeks earlier than the traditional mid-September sowing. Our experiments have sought answers to two questions: i) how much earlier can cotton be sown for reliable crop establishment and high yield; ii) can degradable plastic film mulches minimise the impact of potentially cold temperatures on crop establishment and early vigour. Initial data suggests August sowing offers the potential to grow a high yield at a time of year with reduced risk of cloud and high night temperatures during boll growth. For the past two seasons late winter sowing (with and without film) has resulted in a compact plant with high retention that physiologically matures by the beginning of January. Even with the spectre of replanting cotton in some seasons due to frost in August, early sowing would appear to offer the opportunity for more efficient crop input usage, simplified agronomic management and new crop rotation options during late summer and autumn. This talk will present an overview of results to date.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the 'reducing GHG emissions by feeding nitrates to beef cattle' methodology and the 'beef cattle herd management' methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a 'beef cattle herd management' method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options. © CSIRO 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clearing woodlands is practised world-wide to increase crop and livestock production, but can result in unintended consequences including woody regrowth and land degradation. The pasture response of 2 eucalypt woodlands in the central Queensland rangelands to killing trees with herbicides, in the presence or absence of grazing and regular spring burning, was recorded over 7 or 8 years to determine the long-term sustainability of these common practices. Herbage mass and species composition plus tree dynamics were monitored in 2 replicated experiments at each site. For 8 years following herbicide application, killing Eucalyptus populnea F. Muell. (poplar box) trees resulted in a doubling of native pasture herbage mass from that of the pre-existing woodland, with a tree basal area of 8.7 m2 ha-1. Conversely, over 7 years with a similar range of seasons, killing E. melanophloia F. Muell. (silver-leaved ironbark) trees of a similar tree basal area had little impact on herbage mass grown or on pasture composition for the first 4 years before production then increased. Few consistent changes in pasture composition were recorded after killing the trees, although there was an increase in the desirable grasses Dichanthium sericeum (R. Br.) A. Camus (Queensland bluegrass) and Themeda triandra Forssk. (kangaroo grass) when grazed conservatively. Excluding grazing allowed more palatable species of the major grasses to enhance their prominence, but seasonal conditions still had a major influence on their production in particular years. Pasture crown basal area was significantly higher where trees had been killed, especially in the poplar box woodland. Removing tree competition did not have a major effect on pasture composition that was independent of other management impositions or seasons, and it did not result in a rapid increase in herbage mass in both eucalypt communities. The slow pasture response to tree removal at one site indicates that regional models and economic projections relating to tree clearing require community-specific inputs.