993 resultados para Runge-kutta Methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism involved in the Tm(3+)((3)F(4)) -> Tb(3+)((7)F(0,1,2)) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the (3)F(4) luminescence decay due to the Tm -> Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from (3)F(4) can be completely quenched by 0.8 mol% of Tb(3+). As a consequence, the (7)F(3) state of Tb(3+) interacts with the (3)H(4) upper excited state of TM(3+) slighting decreasing its population. The effective amplification coefficient beta(cm(-1)) that depends on the population density difference Delta n = n((3)H(4))-n((3)F(4)) involved in the optical transition of Tm(3+) (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion An as a function of Tb(3+) concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm(-2). These calculations were performed using the experimental Tm -> Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb(3+) propitiates best population density inversion of Tin(3+) maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 mu m. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer biology is a complex and expanding field of science study. Due its complexity, there is a strong motivation to integrate many fields of knowledge to study cancer biology, and biological stoichiometry can make this. Biological stoichiometry is the study of the balance of multiple chemical elements in biological systems. A key idea in biological stoichiometry is the growth rate hypothesis, which states that variation in the carbon:nitrogen:phosphorus stoichiometry of living things is associated with growth rate because of the elevated demands for phosphorusrich ribosomal RNA and other elements necessary to protein synthesis. As tumor cells has high rate proliferation, the growth rate hypothesis can be used in cancer study. In this work the dynamic of two tumors (primary and secondary) and the chemical elements carbon and nitrogen are simulate and analyzed through mathematical models that utilize as central idea biological stoichiometry. Differential equations from mathematical model are solved by numerical method Runge-Kutta fourth order

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interacciones no lineales de ondas de Alfven existen tanto para plasmas en el espacio como en laboratorios. En ingeniería aeroespacial amarras electrodinámicas espaciales ("tethers") generan emisión de ondas de Alfven en estructuras denominadas "Alas de Alfven". La ecuación Derivada no lineal de Schrödinger (DNLS) posee la capacidad de describir la propagation de ondas de Alfven de amplitud finita circularmente polarizadas tanto para plasmas fríos como calientes. En esta investigación, dicha ecuacion es solucionada numéricamente por medio de tecnicas espectrales para las derivadas espaciales y un esquema de Runge-Kutta de 4to orden para evaluar el avance en el tiempo. Se considera la ecuacion DNLS sin efectos difusivos, sin embargo se mantienen el termino lineal y lineal y el dispersivos. Se ha trabajado con dos condiciones iniciales: 1 - Una onda, 2 - Tres ondas cerca de resonancia (k1 = k2 + k3), la primera onda (correspondiente a k1) está excitada y las otras dos amortiguadas. En el caso de una única onda los resultados numéricos verifican las condiciones analíticas de estabilidad modular, adems se ha encontrado que el tiempo en el que se produce la inestabilidad y la forma en que evoluciona el sistema depende, para un mismo número de onda, de la amplitud inicial. Con tres ondas se realiza un estudio numérico tanto para plasmas frios como calientes encontrándose que aparece redistribución de energía en un gran número de nodos tanto para ondas polarizadas hacia la izquierda como hacia la derecha.