954 resultados para Root Mean Squared Error (RMSE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Everglades Depth Estimation Network (EDEN) is an integrated network of realtime water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on grid with 400-square-meter spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to: (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) (U.S. Army Corps of Engineers, 1999). The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades. The first objective of this report is to validate the spatially continuous EDEN water-surface model for the Everglades, Florida developed by Pearlstine et al. (2007) by using an independent field-measured data-set. The second objective is to demonstrate two applications of the EDEN water-surface model: to estimate site-specific ground elevation by using the validated EDEN water-surface model and observed water depth data; and to create water-depth hydrographs for tree islands. We found that there are no statistically significant differences between model-predicted and field-observed water-stage data in both southern Water Conservation Area (WCA) 3A and WCA 3B. Tree island elevations were derived by subtracting field water-depth measurements from the predicted EDEN water-surface. Water-depth hydrographs were then computed by subtracting tree island elevations from the EDEN water stage. Overall, the model is reliable by a root mean square error (RMSE) of 3.31 cm. By region, the RMSE is 2.49 cm and 7.77 cm in WCA 3A and 3B, respectively. This new landscape-scale hydrological model has wide applications for ongoing research and management efforts that are vital to restoration of the Florida Everglades. The accurate, high-resolution hydrological data, generated over broad spatial and temporal scales by the EDEN model, provides a previously missing key to understanding the habitat requirements and linkages among native and invasive populations, including fish, wildlife, wading birds, and plants. The EDEN model is a powerful tool that could be adapted for other ecosystem-scale restoration and management programs worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(preliminary) Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 sites registered and up to 250 of them sharing data (Free Fair Use dataset). Many modelling groups use the FLUXNET dataset for evaluating ecosystem model's performances but it requires uninterrupted time series for the meteorological variables used as input. Because original in-situ data often contain gaps, from very short (few hours) up to relatively long (some months), we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-interim) and high temporal resolution spanning from 1989 to today. These data are however not measured at site level and for this reason a method to downscale and correct the ERA-interim data is needed. We apply this method on the level 4 data (L4) from the LaThuile collection, freely available after registration under a Fair-Use policy. The performances of the developed method vary across sites and are also function of the meteorological variable. On average overall sites, the bias correction leads to cancel from 10% to 36% of the initial mismatch between in-situ and ERA-interim data, depending of the meteorological variable considered. In comparison to the internal variability of the in-situ data, the root mean square error (RMSE) between the in-situ data and the un-biased ERA-I data remains relatively large (on average overall sites, from 27% to 76% of the standard deviation of in-situ data, depending of the meteorological variable considered). The performance of the method remains low for the Wind Speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to now, snow cover on Antarctic sea ice and its impact on radar backscatter, particularly after the onset of freeze/thaw processes, are not well understood. Here we present a combined analysis of in situ observations of snow properties from the landfast sea ice in Atka Bay, Antarctica, and high-resolution TerraSAR-X backscatter data, for the transition from austral spring (November 2012) to summer (January 2013). The physical changes in the seasonal snow cover during that time are reflected in the evolution of TerraSAR-X backscatter. We are able to explain 76-93% of the spatio-temporal variability of the TerraSAR-X backscatter signal with up to four snowpack parameters with a root-mean-squared error of 0.87-1.62 dB, using a simple multiple linear model. Over the complete study, and especially after the onset of early-melt processes and freeze/thaw cycles, the majority of variability in the backscatter is influenced by changes in snow/ice interface temperature, snow depth and top-layer grain size. This suggests it may be possible to retrieve snow physical properties over Antarctic sea ice from X-band SAR backscatter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca has been considered among the most polluted cities in Mexico. The vehicular park, the industry and the emissions produced by agriculture, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Particulate Matter less than 10 μg/m3 in diameter (PM10). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and air pollutant concentrations of PM10. Before the prediction, Fuzzy c-Means clustering algorithm have been implemented in order to find relationship among pollutant and meteorological variables. These relationship help us to get additional information that will be used for predicting. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of PM10 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results shown that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Th e CERES-Maize model is the most widely used maize (Zea mays L.) model and is a recognized reference for comparing new developments in maize growth, development, and yield simulation. Th e objective of this study was to present and evaluate CSMIXIM, a new maize simulation model for DSSAT version 4.5. Code from CSM-CERES-Maize, the modular version of the model, was modifi ed to include a number of model improvements. Model enhancements included the simulation of leaf area, C assimilation and partitioning, ear growth, kernel number, grain yield, and plant N acquisition and distribution. Th e addition of two genetic coeffi cients to simulate per-leaf foliar surface produced 32% smaller root mean square error (RMSE) values estimating leaf area index than did CSM-CERES. Grain yield and total shoot biomass were correctly simulated by both models. Carbon partitioning, however, showed diff erences. Th e CSM-IXIM model simulated leaf mass more accurately, reducing the CSM-CERES error by 44%, but overestimated stem mass, especially aft er stress, resulting in similar average RMSE values as CSM-CERES. Excessive N uptake aft er fertilization events as simulated by CSM-CERES was also corrected, reducing the error by 16%. Th e accuracy of N distribution to stems was improved by 68%. Th ese improvements in CSM-IXIM provided a stable basis for more precise simulation of maize canopy growth and yield and a framework for continuing future model developments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os métodos de ondas superficiais com ênfase nas ondas Rayleigh foram utilizados como o núcleo desse trabalho de Doutorado. Inicialmente, as ondas Rayleigh foram modeladas permitindo o estudo de sensibilidade de suas curvas de dispersão sob diferentes configurações de parâmetros físicos representando diversos modelos de camadas, em que pôde ser observado parâmetros com maior e menor sensibilidade e também alguns efeitos provocados por baixas razões de Poisson. Além disso, na fase de inversão dos dados a modelagem das ondas Rayleigh foi utilizada para a construção da função objeto, que agregada ao método de mínimos quadrados, a partir do método de Levenberg-Marquardt, permitiu a implementação de um algoritmo de busca local responsável pela inversão de dados das ondas superficiais. Por se tratar de um procedimento de busca local, o algoritmo de inversão foi complementado por uma etapa de pré-inversão com a geração de um modelo inicial para que o procedimento de inversão fosse mais rápido e eficiente. Visando uma eficiência ainda maior do procedimento de inversão, principalmente em modelos de camadas com inversão de velocidades, foi implementado um algoritmo de pós-inversão baseado em um procedimento de tentativa e erro minimizando os valores relativos da raiz quadrada do erro quadrático médio (REQMr) da inversão dos dados. Mais de 50 modelos de camadas foram utilizados para testar a modelagem, a pré-inversão, inversão e pós-inversão dos dados permitindo o ajuste preciso de parâmetros matemáticos e físicos presentes nos diversos scripts implementados em Matlab. Antes de inverter os dados adquiridos em campo, os mesmos precisaram ser tratados na etapa de processamento de dados, cujo objetivo principal é a extração da curva de dispersão originada devido às ondas superficiais. Para isso, foram implementadas, também em Matlab, três metodologias de processamento com abordagens matemáticas distintas. Essas metodologias foram testadas e avaliadas com dados sintéticos e reais em que foi possível constatar as virtudes e deficiências de cada metodologia estudada, bem como as limitações provocadas pela discretização dos dados de campo. Por último, as etapas de processamento, pré-inversão, inversão e pós-inversão dos dados foram unificadas para formar um programa de tratamento de dados de ondas superficiais (Rayleigh). Ele foi utilizado em dados reais originados pelo estudo de um problema geológico na Bacia de Taubaté em que foi possível mapear os contatos geológicos ao longo dos pontos de aquisição sísmica e compará-los a um modelo inicial existente baseado em observações geomorfológicas da área de estudos, mapa geológico da região e informações geológicas globais e locais dos movimentos tectônicos na região. As informações geofísicas associadas às geológicas permitiram a geração de um perfil analítico da região de estudos com duas interpretações geológicas confirmando a suspeita de neotectônica na região em que os contatos geológicos entre os depósitos Terciários e Quaternários foram identificados e se encaixaram no modelo inicial de hemi-graben com mergulho para Sudeste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Madison : the capital of Wisconsin. It was published in 1857. Scale [ca. 1:6,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1983 coordinate system (in Feet) (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a partial cadastral map showing features such as roads, railroads, property lots with names of selected property owners, drainage, selected buildings shown pictorially, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of Madison, Wisconsin : A.A.A.S. XLII meeting, August 17-24, 1893, compliments of the Local Committee. It was published by Tracy, Gibbs & Co., printer in 1893. Scale [ca. 1:20,000]. Covers a portion of Madison, Wisconsin. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1983 coordinate system (in Feet) (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, street railroads, and stations, drainage, selected buildings, city ward boundaries, and more. Includes list of additions and corrections and inset: [Madison Region]. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure from Motion (SfM) is a new form of photogrammetry that automates the rendering of georeferenced 3D models of objects using digital photographs and independently surveyed Ground Control Points (GCPs). This project seeks to quantify the error found in Digital Elevation Models (DEMs) produced using SfM. I modeled a rockslide found at the Cadman Quarry (Monroe, Washington) because the surface is vegetation-free, which is ideal for SfM and Terrestrial LiDAR Scanner (TLS) surveys. By using SfM, TLS, and GPS positioning at the same time, I attempted to find the deviation in the SfM model from the TLS model and GPS points. Using the deviation, I found the Root-Mean-Square Error (RMSE) between the SfM DEM and GPS positions. The RMSE of the SfM model when compared to surveyed GPS points is 17cm. I propagated the uncertainty of the GPS points with the RMSE of the SfM model to find the uncertainty of the SfM model compared to the NAD 1984 datum. The uncertainty of the SfM model compared to the NAD 1984 is 27cm. This study did not produce a model from the TLS that had sufficient resolution on horizontal surfaces to compare to surveyed GPS points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).