854 resultados para Room-temperature Creep


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expeditious synthesis of highly substituted benzenes with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transformation of 2H-pyran-2-one with malononitrile in excellent yield. The novelty of the reaction lies in the creation of an aromatic ring at room temperature from six membered-lactones under mild reaction conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organized InGaAs QDs are intensively studied for optoelectronic applications. Several approaches are in study to reach the emission wavelengths needed for these applications. The use of antimony (Sb) in either the capping layer or into the dots is one example. However, these studies are normally focused on buried QD (BQD) where there are still different controversial theories concerning the role of Sb. Ones suggest that Sb incorporates into the dot [1], while others support the hypothesis that the Sb occupies positions surrounding the dot [2] thus helping to keep their shape during the capping growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report, for the first time at room temperature, experimental results that prove, simultaneously in the same device, the two main physical principles involved in the operation of intermediate band solar cells: (1) the production of sub-bandgap photocurrent by two optical transitions through the intermediate band; (2) the generation of an output voltage which is not limited by the photon energy absorption threshold. These principles, which had always required cryogenic temperatures to be evidenced all together, are now demonstrated at room temperature on an intermediate band solar cell based on InAs quantum dots with Al0.3Ga0.7As barriers.