894 resultados para Roís de Corella, Joan
Resumo:
Measurements of the duration of X-ray lasing pumped with picosecond pulses from the VULCAN optical laser are obtained using a streak camera with 700 fs temporal resolution. Combined with a temporal smearing due to the spectrometer employed, we have measured X-ray laser pulse durations for Ni-like silver at 13.9 nm with a total time resolution of 1.1 ps. For Ni-like silver, the X-ray laser output has a steep rise followed by an approximately exponential temporal decay with measured full-width at half-maximum (FWHM) of 3.7 (+/-0.5) ps. For Ne-like nickel lasing at 23.1 nm, the measured duration of lasing is approximate to10.7 (+/-1) ps (FWHM). An estimate of the duration of the X-ray laser gain has been obtained by temporally resolving spectrally integrated continuum and resonance line emission. For Ni-like silver, this time of emission is approximate to22 (+/-2) ps (FWHM), while for Ne-like nickel we measure approximate to35 (+/-2) ps (FWHM). Assuming that these times of emission correspond to the gain duration, we show that a simple model consistently relates the gain durations to the measured durations of X-ray lasing. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS.
Results: We found that in the heart, t½ of complex I deactivation during ischemia was 10?min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H2O2 or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis.
Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting.
Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R.
Resumo:
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury.
Resumo:
Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Whilst increasing evidence supports a key role for reactive oxygen species (ROS), specifically those derived from Nox NADPH oxidases, in the underlying angiogenic processes of these and other endothelial cells, such studies investigating the role of redox signalling may be hampered by the standard inclusion of antioxidant agents in endothelial cell media, such as phenol red. Aims. To study the effects of antioxidants present in culture media on pro-angiogenic function of ECFCs in vitro. Methods. Human ECFCs isolated from umbilical cord blood were maintained in media with and without antioxidant components (EGM2 and phenol red-free DMEM, respectively) prior to treatment with pro-oxidant PMA and assessment of their in vitro migratory capacity using a scratch-wound assay to measure pro-angiogenic activity. Results. Our previous work in our group indicated that PMA (500nM) increased ECFC migration in a both a superoxide and NADPH oxidase-dependent manner (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05), as indicated by attenuation with PEG-SOD and VAS2870. However, inconsistencies in the data generated under varying experimental conditions led us to hypothesise that antioxidant agents in the standard ECFC media may be influencing these effects. Indeed, a direct comparison of cell migration between ECFCs incubated in EGM2 DMEM demonstrated a clear trend towards higher migration in the latter (EGM2 9.0±4.5, DMEM 22.7±6.4%; n=3, P=NS). Similar to our previous EGM2 studies, cell migration was potentiated by PMA (control 11.6±1.6, PMA 25.1±2.8%; n=3, P<0.05), but at a lower dose (100nM), which is consistent with a reduction in media antioxidants. Notably, this response was attenuated by VAS2870 (PMA 37.6±7.3, PMA+VAS2870 10.3±2.9%; n=6, P<0.05), underlining a likely role for Nox NADPH oxidases. Conclusion. Taken together, these data indicate that ECFC migration is sensitive to different endothelial cell growth media, which appears to be dependent upon their antioxidant content. Although further experiments, such as quantification of cellular superoxide generation by dihydroethidium fluorescence may be required to confirm a specific role for antioxidants, such blunting of ROS signalling in vitro is clearly an important consideration which may significantly impact upon data interpretation.
Resumo:
Desarrolla los datos registrados en la Reserva Nacional Pacaya - Samiria, de noviembre de 1971 a noviembre de 1975, efectuado con 697 paiches hembras; donde determinaron el ciclo de desove y la longitud que alcanza el paiche en su primera madurez sexual.
Resumo:
Presenta los resultados de la prospección ejecutada en los ríos Ocoña, Majes - Camaná y Tambo (Departamento de Arequipa), entre el 31 de mayo y el 20 de junio de 1996, con el objetivo de evaluar el estado actual de las poblaciones de camarón de río, Cryphiops caementarius. A su vez, se analizó los principales factores abióticos de la calidad del agua, a fin de establecer su influencia en la distribución y abundancia del recurso.
Resumo:
Presenta los resultados de las prospecciones ejecutadas en octubre de 1997, para estimar parámetros poblacionales, con especial referencia a los stocks de adultos y subadultos del recurso camarón de rió en los ríos Ocoña, Majes-Camaná y Tambo.
Resumo:
[Regimen sanitatis Salernitanum (latin). 1553]