962 resultados para Ring-opening polymerization
Resumo:
A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.
Resumo:
A series of lutetium alkyl, amino, and guanidinato complexes based upon an amino-phosphine ligand framework had been prepared. These complexes were applied to initiate ring-opening polymerization of 2,2'-dimethyltrimethylene carbonate (DTC). The type of the initiator significantly influenced the catalytic activity of these complexes in a trend as follows: alkyl approximate to guanidinate > amide, whereas the complexes with flexible backbone between P and N atoms within the ligand exhibited higher activity than those with rigid backbone. The isolated PDTC had bimodal-mode molecular weight distribution. The molecular weights of each fraction increased linearly with the conversion, indicating that there might be two active species. This had been confirmed by analyses of oligomeric DTC living species and oligomer with NMR technique as the metal-alkoxide and the four-membered metallocyclic lactate. Kinetic investigation displayed that the polymerization rate was the first order with the monomer concentration.
Resumo:
A facile and efficient synthesis Of Substituted pyridin-2(1H)-ones has been developed by the reaction of readily available 1-carbamoyl-]-[3-(dimethylamino)propenoyl]cyclopropanes with phosphoryl chloride or phosphorus tribromide in dichloromethane at room temperature.
Resumo:
A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.
Resumo:
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.
Resumo:
Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)(3)(THF)(2), by equimolar H(C5Me4)SiMe3(HCp') and indene (Ind-H) afforded (eta(5)-Cp')Y(CH2SiMe3)(2)(THF) (1) and (eta(5)-Ind)Y(CH2SiMe3)(2)(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2OH (HL2) gave mixed ligands supported alkyl complexes [(eta(5)-Cp')(L)]Y(CH2SiMe3) (3: L = L-1; 4: L = L-2). Whilst, complex 2 was treated with HL2 to yield [(eta(5)-Ind)(L-2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization Of L-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.
Resumo:
A series of aluminum ethyls and isopropoxides based upon N,N,O,O-tetradentate Schiff base ligand framework have been prepared. X-ray diffraction analysis and H-1 NMR confirmed that these Schiff base aluminum ethyls and isopropoxides were all monomeric species with a five-coordinated central aluminum in their solid structures. Compared to the aluminum ethyls which all retain their monomeric structure in the solution, the dinucleating phenomenons of aluminum isopropoxides with less steric hindered substituents in the solution have also been observed. The activities and stereoselectivities of these complexes toward the ring-opening polymerization of rac-lactide have been investigated. Polymerization experiments indicated that (SB-2d)(AlOPr)-Pr-i [(SB-2d) = 2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)] exhibited the highest stereoselectivity and (SB-3b)(AlOPr)-Pr-i [(SB-3b) = 2,2-dimethyl-1,3-propylenebis(3,5-dichlorinesalicylideneiminato)] possessed the highest activity among these aluminum isopropoxides. The substituents and the mode of the bridging part between the two nitrogen atoms both exerted significant influences upon the progress of the polymerizations, influencing either the tacticity of isolated polymers or the rate of polymerization.
Resumo:
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L-1 = bis(benzoylacetone)propane-1,2-diimine, L-2 = bis(acetylacetone)-propane-1,2-diimine, L-3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes la, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. H-1 NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lacticle (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A novel method of grafting ring-opening polymerization of L-lactide (LLA) onto the surface of hydroxyapatite nano-particles (n-HAP) was developed. PLLA was directly connected onto the HAP surface through a chemical linkage. The PLLA-g-HAP particles could be stably dispersed in organic solvent such as chloroform for several weeks. The n-HAP particles still retained the original dimension and shape after the grafting of PLLA. Compared with the P-31 MAS-NMR spectrum of pure HAP powders, there appeared a downfield displacement of 1.2 ppm in the spectrum of PLLA-g-HAP. Fourier transformation infrared (FT-IR) spectra further confirmed the existence of PLLA on the surface of PLLA-g-HAP. The amount of grafted polymer determined by thermal gravimetric analysis (TGA) was about 6% in weight. The tensile strength and elongation at break of the PLLA/PLLA-g-HAP composite containing 8 wt% of PLLA-g-HAP were 55 MPa and about 10-13%, respectively, while those of the PLLA/n-HAP composites were 40 MPa and 3-5%, respectively.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
Cyclic oligomers containing hexafluoroiso-propylidene(HFIP) units were prepared in excellent yields by a nucleophilic aromatic substitution reaction of 4,4(7)- (hexafluoroisopropylidene) diphenol with difluoro-monomers in the presence of anhydrous potassium carbonate under pseudo high dilution conditions. A combination of GPC, MALDI-TOF MS and NMR analysis confirmed the structure of the cyclic oligomers. All macrocyclic oligomers are crystalline and undergo facile melt polymerization to give high molecular weight fluorinated polyethers.
Resumo:
Some novel macrocyclic (arylene ether sulfone) containing cardo groups and (arylene ether ketone sulfone) oligomers have been synthesized in high yields by a nucleophilic aromatic substitution reaction of 4,4'-difluorophenylsulfone with bisphenols in the presence of anhydrous potassium carbonate under a pseudo-high-dilution condition. Detailed structural characterization of these oligomers by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), fast atom bombardment mass spectrometry (f.a.b.-m.s.), nuclear magnetic resonance spectrometry (n.m.r.) and single-crystal X-ray structure analysis confirms their cyclic nature, and the composition of the oligomeric mixtures is provided by g.p.c. analysis. Ring polymerization of cyclic oligomers 3a to a high molecular weight polymer with M-w of 59.1 k was achieved by heating at 290 degrees C for 40 min in the presence of a nucleophilic initiator. (C) 1998 Elsevier Science Ltd. All rights reserved.