957 resultados para Riemann-Liouville and Caputo Fractional Derivatives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = 0 , where 2 < α ≤ 3 and D 0 + α is the Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the solution is not treated. We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear). 2010 Mathematics Subject Classification: 34B15

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 74B20, 74D10, 74L15

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we generalize radial and standard Clifford-Hermite polynomials to the new framework of fractional Clifford analysis with respect to the Riemann-Liouville derivative in a symbolic way. As main consequence of this approach, one does not require an a priori integration theory. Basic properties such as orthogonality relations, differential equations, and recursion formulas, are proven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.