987 resultados para Rheological parameters
Resumo:
A magneto-rheological (MR) fluid damper is a semi-active control device that has recently begun to receive more attention in the vibration control community. However, the inherent nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve high damping control system performance. Therefore the development of an accurate modeling method for a MR fluid damper is necessary to take advantage of its unique characteristics. Our goal was to develop an alternative method for modeling a MR fluid damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior of the researched damper is directly estimated through a fuzzy mapping system. In order to improve the accuracy of the STF model, a back propagation and a gradient descent method are used to train online the fuzzy parameters to minimize the model error function. A series of simulations had been done to validate the effectiveness of the suggested modeling method when compared with the data measured from experiments on a test rig with a researched MR fluid damper. Finally, modeling results show that the proposed STF interference system trained online by using neural technique could describe well the behavior of the MR fluid damper without need of calculation time for generating the model parameters.
Resumo:
Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.
Resumo:
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
There is an increasing need to identify the effect of mix composition on the rheological properties of composite cement pastes using simple tests to determine the fluidity, the cohesion and other mechanical properties of grouting applications such as compressive strength. This paper reviews statistical models developed using a fractional factorial design which was carried out to model the influence of key parameters on properties affecting the performance of composite cement paste. Such responses of fluidity included mini-slump, flow time using Marsh cone and cohesion measured by Lombardi plate meter and unit weight, and compressive strength at 3 d, 7 d and 28 d. The models are valid for mixes with 0.35 to 0.42 water-to-binder ratio (W/B), 10% to 40% of pulverised fuel ash (PFA) as replacement of cement by mass, 0.02 to 0.06% of viscosity enhancer admixture (VEA), by mass of binder, and 0.3 to 1.2% of superplasticizer (SP), by mass of binder. The derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of composite cement paste are presented. Such parameters can be useful to reduce the test protocol needed for proportioning of composite cement paste. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods which are highlighted. The multi parametric optimization is used in order to establish isoresponses for a desirability function of cement composite paste. Results indicate that the replacement of cement by PFA is compromising the early compressive strength and up 26%, the desirability function decreased.
Resumo:
There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.
Resumo:
Three large deformation rheological tests, the Kieffer dough extensibility system, the D/R dough inflation system and the 2 g mixograph test, were carried out on doughs made from a large number of winter wheat lines and cultivars grown in Poland. These lines and cultivars represented a broad spread in baking performance in order to assess their suitability as predictors of baking volume. The parameters most closely associated with baking volume were strain hardening index, bubble failure strain, and mixograph bandwidth at 10min. Simple correlations with baking volume indicate that bubble failure strain and strain hardening index give the highest correlations, whilst the use of best subsets regression, which selects the best combination of parameters, gave increased correlations with R-2 = 0.865 for dough inflation parameters, R-2 = 0. 842 for Kieffer parameters and R-2 = 0.760 for mixograph parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
"Yor" is a traditional sausage like product widely consumed in Thailand. Its textures are usually set by steaming, in this experiment ultra-high pressure was used to modify the product. Three types of hydrocolloid; carboxymethylcellulose (CMC), locust bean gum (LBG) and xanthan gum, were added to minced ostrich meat batter at concentration of 0-1% and subjected to high pressure 600 Mpa, 50 degrees C, 40 min. The treated samples were analysed for storage (G) and loss (G '') moduli by dynamic oscillatory testing as well as creep compliance for control stress measurement. Their microstructures using confocal microscopy were also examined. Hydrocolloid addition caused a significant (P < 0.05) decrease in both the G' and G '' moduli. However the loss tangent of all samples remained unchanged. Addition of hydrocolloids led to decreases in the gel network formation but appears to function as surfactant materials during the initial mixing stage as shown by the microstructure. Confocal microscopy suggested that the size of the fat droplets decreased with gum addition. The fat droplets were smallest on the addition of xanthan gum and increased in the order CMC, LBG and no added gum, respectively. Creep parameters of ostrich yors with four levels of xanthan gum addition (0.50%, 0.75%, 1.00% and 1.25%) showed an increase in the instantaneous compliance (J(0)), the retarded compliance (J(1)) and retardation time (lambda(1)) but a decrease in the viscosity (eta(0)) with increasing levels of addition. The results also suggested that the larger deformations used during creep testing might be more helpful in assessing the mechanical properties of the product than the small deformations used in oscillatory rheology. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In order to achieve a safe swallowing in patients with dysphagia, liquids must be thickened. In this work, two commercial starch based thickeners dissolved in water, whole milk, apple juice and tomato juice were studied. The thickeners were Resource®, composed of modified maize starch and Nutilis®, composed of modified maize starch and gums. They were formulated at two different concentrations corresponding to nectar- and pudding-like consistencies. Influence of composition, concentration and food matrix on rheological properties and structure of the resulting pastes were analysed. Viscoelastic measurements and microscopic observations of the thickeners dissolved in water revealed structural differences due to the presence of gums. When the thickeners were dissolved in the other food matrices significant statistical interactions were found between the matrix and the thickener-type in both the viscoelastic and flow parameters. The most relevant differences were observed for the nectar-like consistency with Nutilis® thickener in milk and apple juice. These samples had lower zero viscosity values and higher loss tangent values, that corresponded to weaker structured systems. Light microscopy images showed that the matrix formed by swollen starch granules was interrupted by the presence of gums. The structure of the matrices in pudding-like formulations became more continuous irrespectively of the matrix employed, and also differences in viscoelasticity among samples diminished. Although differences were observed in zero shear viscosity values among samples, the viscosity of the beverages at 50 s−1 – commonly used as a reference for swallowing – was similar for all samples regardless of the matrix used.
Resumo:
This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP) whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling It Included seven batches/trials three were supplemented with each type of the dairy protein used three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g(-1) of final product A control experiment was prepared without supplementing the milk base Processed milk bases were fermented at 42 C until pH 4 5 by using a starter culture blend that consisted of Streptococcus thermophilus Lactobacillus delbrueckii subsp bulgaricus and Bifidobacterium (Humans subsp lactis The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses enumeration of viable bacteria and theological characteristics of the yoghurts Models were adjusted to the results (kinetic responses counts of viable bacteria and theological parameters) through three regression models (linear quadratic and cubic special) applied to mixtures The results showed that the addition of milk proteins affected slightly acidification profile and counts of S thermophilus and B animal`s subsp lactis but it was significant for L delbrueckii subsp bulgaricus Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the theological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of guava pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp rheological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV.
Resumo:
Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).
Resumo:
Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.