963 resultados para Reversible modulation
Resumo:
Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as `benign cytochrome c oxidase deficiency myopathy` is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T > C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.
Resumo:
The present study investigated the effects of bilateral adrenalectomy (ADX) on the synthesis of basic fibroblast growth factor (bFGF, FGF-2) mRNA and on the expression of its FGF receptor subtype-2 (FGFR2) mRNA after a 6-hydroxydopamine (6-OHDA)-induced lesion of nigrostriatal dopamine system. In previous papers we have demonstrated that corticosterone increases FGF-2 immunoreactivity mainly in the astrocytes of the substantia nigra [Chadi, G., Rosen, L., Cintra, A., Tinner, B., Zoli, M., Pettersson, R.F., Fuxe, K., 1993b. Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. Neuroreport 4, 783-786.] and that 6-OHDA injected in the ventral midbrain upregulates FGF-2 synthesis in reactive astrocytes in the ascending dopamine pathways [Chadi, G., Cao, Y., Pettersson, R.F., Fuxe, K., 1994. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891-910.]. Rats were adrenalectomized and received a 6-OHDA stereotaxical injection in the ventral midbrain 2 days later. Seven days after the dopamine lesion, Western blot analysis showed a decreased level of tyrosine hydroxylase in the lesioned side of the midbrain, an event that was not altered by ADX or corticosterone replacement. Moreover, the degeneration of nigral dopamine neurons, which was confirmed by the disappearance of acidic FGF (FGF-1) mRNA and the decrement of tyrosine hydroxylase mRNA labeled nigral neurons, was not altered by ADX. The FGF-2 protein (23 kDa isoform but not 21 kDa fraction) levels increased in the lesioned side of the ventral midbrain. This elevation was counteracted by ADX, an effect that was fully reversed by corticosterone replacement. In situ hybridization revealed that ADX counteracted the elevated FGF-2 mRNA levels in putative glial cells of the ipsilateral pars compacta of the substantia nigra and in the ventral tegmental area. The ADX also counteracted the increased density and intensity of the astroglial FGF-2 immunoreactive profiles within the lesioned pars compacta of the substantia nigra and the ventral tegmental area as determined by stereology. The stereotaxical mechanical needle insertion triggered the expression of FGFR2 mRNA in putative glial cells, spreading to the entire ipsilateral ventral midbrain from the region of needle track, an occurrence that was partially reversed by ADX. In conclusion, bilateral ADX counteracted the increased astroglial FGF-2 synthesis in the dopamine regions of the ventral midbrain following a 6-OHDA-induced local lesion and interfered with FGF receptor regulation around injury. These findings give further evidence that adrenocortical hormones may regulate the astroglial FGF-2-mediated trophic mechanisms and wound repair events in the lesioned central nervous system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We studied the anisotropic aggregation of spherical latex particles dispersed in a lyotropic liquid crystal presenting three nematic phases; calamitic, biaxial, and discotic. We observed that in the nematic calamitic phase aggregates of latex particles are formed, which become larger and anisotropic in the vicinity of the transition to the discotic phase, due to a coalescence process. Such aggregates are weakly anisotropic and up to 50 mu m long and tend to align parallel to the director field. At the transition to the discotic phase, the aggregates dissociated and re-formed when the system was brought back to the calamitic phase. This shows that the aggregation is due to attractive and repulsive forces generated by the particular structure of the nematic phase. The surface-induced positional order was investigated by surface force apparatus experiments with the lyotropic system confined between mica surfaces, revealing the existence of a presmectic wetting layer around the surfaces and oscillating forces of increasing amplitude as the confinement thickness was decreased. We discuss the possible mechanisms responsible for the reversible aggregation of latex particles, and we propose that capillary condensation of the N(C) phase, induced by the confinement between the particles, could reduce or remove the gradient of order parameter, driving the transition of aggregates from solidlike to liquidlike and gaslike.
Resumo:
PRES is a neuroclinical and radiological syndrome that results from treatment with calcineurin inhibitor immunosuppressives. Severe hypertension is commonly present, but some patients may be normotensive. We report herein two children who received liver transplants, as treatment for biliary atresia in the first case and for Alagille`s syndrome in the second one. In the early postoperative, both patients presented hypertension and seizures. In both cases, the image findings suggested the diagnosis of PRES. The CT scan showed alterations in the posterior area of the brain, and brain MRI demonstrated parietal and occipital areas of high signal intensity. Both children were treated by switching the immunosuppressive regimen and controlling arterial blood pressure. They displayed full recuperation without any neurologic sequelae. Probably, the pathophysiology of PRES results from sparse sympathetic innervation of the vertebrobasilar circulation, which is responsible for supplying blood to the posterior areas of the brain. In conclusion, all liver-transplanted children who present with neurological symptoms PRES should be considered in the differential diagnosis, although this is a rare complication. As treatment, we recommend rigorous control of arterial blood pressure and switching the immunosuppressive regimen.
Resumo:
Background: The relation between left ventricular filing velocities determined by Doppler echocardiography and autonomic nervous system function assessed by heart rate variability (HRV) is unclear. The aim of this study was to evaluate the influence of the autonomic nervous system assessed by the time and frequency domain indices of HRV in the Doppler indices of left ventricular diastolic filling velocities in patients without heart disease. Methods: We studied 451 healthy individuals (255 female [56.4%]) with normal blood pressure, electrocardiogram, chest x-ray, and treadmill electrocardiographic exercise stress test results, with a mean age of 43 +/- 12 (range 15-82) years, who underwent transthoracic Doppler echocardiography and 24-hour electrocardiographic ambulatory monitoring. We studied indices of HRV on time (standard deviation [SD] of all normal sinus RR intervals during 24 hours, SD of averaged normal sinus RR intervals for all 5-minute segments, mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms) and frequency (low frequency, high frequency, very low frequency, low frequency/high frequency ratio) domains relative to peak flow velocity during rapid passive filling phase (E), atrial contraction (A), E/A ratio, E-wave deceleration time, and isovolumic relaxation time. Statistical analysis was performed with Pearson correlation and logistic regression. Results: Peak flow velocity during rapid passive filling phase (E) and atrial contraction (A), E/A ratio, and deceleration time of early mitral inflow did not demonstrate a significant correlation with indices of HRV in time and frequency domain. We found that the E/A ratio was < 1 in 45 individuals (10%). Individuals with an E/A ratio < 1 had lower indices of HRV in frequency domain (except low frequency/high frequency) and lower indices of the mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms in time domain. Logistic regression demonstrated that an E/A ratio < 1 was associated with lower HF. Conclusion: Individuals with no evidence of heart disease and an E/A ratio < 1 demonstrated a significant decrease in indexes of HRV associated with parasympathetic modulation. (J Am Soc Echocardiogr 2010;23: 762-5.)
Resumo:
Background: In view of conflicting neuroimaging results regarding autonomic-specific activity within the anterior cingulate cortex (ACC), we investigated autonomic responses to direct brain stimulation during sterecitactic limbic surgery. Methods: Skin conductance activity and accelerative heart rate responses to multi-voltage stimulation of the ACC (n = 7) and paralimbic subcauclate (n = 5) regions were recorded during bilateral anterior cingulotomy and bilateral subcauclate tractotomy (in patients that had previously received an adequate lesion in the ACC), respectively. Results: Stimulations in both groups were accompanied by increased autonomic arousal. Skin conductance activity was significantly increased during ACC stimulations compared with paralimbic targets at 2 V (2.34 +/- .68 [score in microSiemens +/- SE] vs. .34 +/- .09, p = .013) and 3 V (3.52 +/- .86 vs. 1.12 +/- .37, p = .036), exhibiting a strong ""voltage-response"" relationship between stimulus magnitude and response amplitude (difference from 1 to 3 V = 1.15 +/- .90 vs. 3.52 +/- .86, p = .041). Heart rate response was less indicative of between-group differences. Conclusions: This is the first study of its kind aiming at seeking novel insights into the mechanisms responsible for central autonomic modulation. It supports a concept that interregional interactions account for the coordination of autonomic arousal.
Resumo:
Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts.
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.
Resumo:
Epileptic seizures are hypersynchronous, paroxystic and abnormal neuronal discharges. Epilepsies are characterized by diverse mechanisms involving alteration of excitatory and inhibitory neurotransmission that result in hyperexcitability of the central nervous system (CNS). Enhanced neuronal excitability can also be achieved by inflammatory processes, including the participation of cytokines, prostaglandins or kinins, molecules known to be involved in either triggering or in the establishment of inflammation. Multiple inductions of audiogenic seizures in the Wistar audiogenic rat (WAR) strain are a model of temporal lobe epilepsy (TLE), due to the recruitment of limbic areas such as hippocampus and amygdata. In this study we investigated the modulation of the B-1 and B-2 kinin receptors expression levels in neonatal WARs as well as in adult WARs subjected to the TLE model. The expression levels of pro-inflammatory (IL-1 beta) and anti-inflammatory (IL-10) cytokines were also evaluated, as well as cyclooxygenase (COX-2). Our results showed that the B-1 and B-2 kinin receptors mRNAs were up-regulated about 7- and 4-fold, respectively, in the hippocampus of kindled WARs. On the other hand, the expressions of the IL-1 beta, IL-10 and COX-2 were not related to the observed increase of expression of kinin receptors. Based on those results we believe that the B, and B2 kinin receptors have a pivotal role in this model of TLE, although their participation is not related to an inflammatory process. We believe that kinin receptors in the CNS may act in seizure mechanisms by participating in a specific kininergic neurochemical pathway. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aims: The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. Main methods: With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. Key findings: The pharmacologically reversible ablation of the dbB with local microinjection of CoCl(2) significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. Significance: The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the VAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (COCl(2)) (1 mM/100 nL), a nonselective synapse blocker. COCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.