965 resultados para Reversible jump Markov chain Monte Carlo
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
Doctorado en Análisis Económico. Programa en Análisis Económico Aplicado
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.
Resumo:
This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.
Resumo:
Foi utilizada uma análise de segregação com o uso da inferência Bayesiana para estimar componentes de variância e verificar a presença de genes de efeito principal (GEP) influenciando duas características de carcaça: gordura intramuscular (GIM), em %, e espessura de toucinho (ET), em mm; e uma de crescimento, ganho de peso (g/dia) dos 25 aos 90 kg de peso vivo (GP). Para este estudo, foram utilizadas informações de 1.257 animais provenientes de um delineamento de F2, obtidos do cruzamento de suínos machos Meishan e fêmeas Large White e Landrace. No melhoramento genético animal, os modelos poligênicos finitos (MPF) podem ser uma alternativa aos modelos poligênicos infinitesimais (MPI) para avaliação genética de características quantitativas usando pedigrees complexos. MPI, MPF e MPI combinado com MPF foram empiricamente testados para se estimar componentes de variâncias e número de genes no MPF. Para a estimação de médias marginais a posteriori de componentes de variância e de parâmetros, foi utilizada uma metodologia Bayesiana, por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC), via Amostrador de Gibbs e Reversible Jump Sampler (Metropolis-Hastings). em função dos resultados obtidos, pode-se evidenciar quatro GEP, sendo dois para GIM e dois para ET. Para ET, o GEP explicou a maior parte da variação genética, enquanto, para GIM, o GEP reduziu significativamente a variação poligênica. Para a variação do GP, não foi possível determinar a influência do GEP. As herdabilidades estimadas ajustando-se MPI para GIM, ET e GP foram de 0,37; 0,24 e 0,37, respectivamente. Estudos futuros com base neste experimento que usem marcadores moleculares para mapear os genes de efeito principal que afetem, principalmente GIM e ET, poderão lograr êxito.
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.
Resumo:
Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.