869 resultados para Reuse of treated wastewater
Resumo:
A manufactured aeration and nanofiltration MBR greywater system was tested during continuous operation at the University of Reading, to demonstrate reliability in delivery of high quality treated greywater. Its treatment performance was evaluated against British Standard criteria [BSI (Greywater Systems—Part 1 Code of Practice: BS8525-1:2010. BS Press, 2010); (Greywater Systems—Part 2 Domestic Greywater Treatment, Requirements and Methods: BS 8525-2:2011. BS Press, 2011)]. The low carbon greywater recycling technology produced excellent analytical results as well as consistency in performance. User acceptance of such reliably treated greywater was then evaluated through user perception studies. The results inform the potential supply of treated greywater to student accommodation. Out of 135 questionnaire replies, 95% demonstrated a lack of aversion in one or more attributes, to using treated, recycled greywater.
Resumo:
This study aims to assess the potential for industrial reuse of textile wastewater, after passing through a physical and chemical pretreatment, into denim washing wet processing operations in an industrial textile laundry, with no need for complementary treatments and dilutions. The methodology and evaluation of the proposed tests were based on the production techniques used in the company and upgraded for the experiments tested. The characterization of the treated effluent for 16 selected parameters and the development of a monitoring able to tailor the treated effluent for final disposal in accordance with current legislation was essential for the initiation of testing for reuse. The parameters color, turbidity, SS and pH used were satisfactory as control variables and presents simple determination methods. The denim quality variables considered were: color, odor, appearance and soft handle. The tests were started on a pilot scale following complexity factors attributed to the processes, in denim fabric and jeans, which demonstrated the possibility of reuse, because there was no interference in the processes and at quality of the tested product. Industrial scale tests were initiated by a step control that confirmed the methodology efficiency applied to identify the possibility of reuse by tests that precede each recipe to be processed. 556 replicates were performed in production scale for 47 different recipes of denim washing. The percentage of water reuse was 100% for all processes and repetitions performed after the initial adjustment testing phase. All the jeans were framed with the highest quality for internal control and marketed, being accepted by contractors. The full-scale use of treated wastewater, supported by monitoring and evaluation and control methodology suggested in this study, proved to be valid in textile production, not given any negative impact to the quality the produced jeans under the presented conditions. It is believed that this methodology can be extrapolated to other laundries to determine the possibility of reuse in denim washing wet processing with the necessary modifications to each company.
Resumo:
Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR-laboratory scale- 14L) containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2.L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2.L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.
Resumo:
Objective: To evaluate the value of post-treatment follow-up in osteosarcoma patients. Methods: Data were collected through a clinical record, with socio-demographic and clinical data, and information relating to the medical appointment. Descriptive analysis of the data was carried out. The Chi-squared test was used to associate the independent variables with attendance at scheduled follow-up appointments. Results: We found a recurrence in 59.6% of cases, of which 58% were lung related; 44% presented clinical complaints and arrived on the scheduled date of the appointment. There was no statistically significant association between the demographic characteristics and early attendance of follow-up visits. 81.3% of the cases who came for the appointment earlier than originally scheduled presented complaints compared to those who did not (p=0.005). Of the cases who presented recurrence, 12.9% attended an appointment late and those who did not present recurrence, 47.6% were late for the appointment (p=0.006). Conclusion: It is seen that the patients who came for an earlier appointment presented more complaints and were associated with the positive result of the exams carried out. The patients who had recurrence and came for an earlier appointment did not present a statistically significant difference in recurrence-free survival. It was observed that distance was not a predominant factor in late attendance at appointments. Level of Evidence II, Retrospective Study.
Resumo:
The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.