985 resultados para Renal sympathetic activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diagonal band of Broca (DBB) is involved in cardiovascular control in rats, In the present Study, we report the effect of acute and reversible neurotransmission inhibition in the DBB by bilateral microinjection of the nonselective neurotransmission blocker CoCl(2) (1 mM, 100 nL) on the cardiac baroreflex response in unanesthetized rats. Local DBB neurotransmission inhibition did not affect baseline values of either blood pressure or heart rate, Suggesting no tonic DBB influence oil cardiovascular system activity. However, CoCl(2) microinjections enhanced both the reflex bradycardia associated with blood pressure increases caused by i.v. infusion of phenylephrine and tachycardiac response evoked by blood pressure decreases caused by i.v. infusion of sodium nitroprusside. An increase in baroreflex gain was also observed. Baroreflex returned to control values 60 min after CoCl(2) microinjections, confirming its reversible effect. In conclusion, our data suggest that synapses within DBB have a tonic inhibitory influence on both the cardiac parasympathetic and sympathetic components of the baroreflex. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we evaluated cardiac baroreflex responses of rats submitted to acute restraint stress. The baroreflex was tested: immediately before, during a 30 min exposure to restraint stress, as well as 30 and 60 min after ending the stress session (recovery period). Restraint increased both mean arterial pressure (MAP) and heart rate (HR). The magnitude of tachycardiac responses evoked by intravenous infusion of sodium nitroprusside was higher during restraint stress, whereas that of bradycardiac responses evoked by intravenous infusion of phenylephrine was decreased. Restraint-evoked baroreflex changes were still observed at 30 min into the recovery period, although MAP and HR values had already returned to control values. The baroreflex was back to control values at 60 min of the recovery period. Intravenous administration of the selective beta(1)-adrenoceptor antagonist atenolol blocked the restraint-evoked increase in the tachycardiac baroreflex response, but did not affect the effects on the bradycardiac response. In conclusion, the present results suggest that psychological stresses, such as those resulting from acute restraint, affect the baroreflex. Restraint facilitated the tachycardiac baroreflex response and reduced the bradycardiac response. Restraint-related effects on baroreflex persisted for at least 30 min after ending restraint, although MAP and HR had already returned to control levels. The cardiac baroreflex returned to control values 60 min after the end of restraint, indicating non-persistent effects of acute restraint on the baroreflex. Results also indicate that the influence of restraint stress on the baroreflex tachycardiac response is mainly dependent on cardiac sympathetic activity, whereas the action on the bradycardiac response is mediated by the cardiac parasympathetic component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms. For a better understanding of these mechanisms, here we used a patch-clamp approach in brainstem slices to evaluate the characteristics of the synaptic transmission of NTS neurons sending projections to the ventral medulla, which include the premotor neurons involved in the generation of the sympathetic outflow. The NTS neurons sending projections to the ventral medulla were identified by previous microinjection of the membrane tracer dye, 1,1`-dioctadecyl-3,3,3`,3`-tetramethylindocarbocyanine perchlorate (DiI), in the ventral medulla and the spontaneous (sEPSCs) and tractus solitarius (TS)-evoked excitatory postsynaptic current (TS-eEPSCs) were recorded using patch clamp. With this approach, we made the following observations on NTS neurons projecting to the ventral medulla: (i) the sEPSCs and TS-eEPSCs of DiI-labelled NTS neurons were completely abolished by 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), an antagonist of ionotropic non-NMDA glutamatergic receptors, showing that they are mediated by L-glutamate; (ii) application of ATP increased the frequency of appearance of spontaneous glutamatergic currents, reflecting an increased exocytosis of glutamatergic vesicles; and (iii) ATP decreased the peak of TS-evoked glutamatergic currents. We conclude that L-glutamate is the main neurotransmitter of spontaneous and TS-evoked synaptic activities in the NTS neurons projecting to the ventral medulla and that ATP has a dual modulatory role on this excitatory transmission, facilitating the spontaneous glutamatergic transmission and inhibiting the TS-evoked glutamatergic transmission. These data also suggest that ATP is not acting as a cotransmitter with L-glutamate, at least at the level of this subpopulation of NTS neurons studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transitory increase in blood pressure (BP) is observed following upper airway surgery for obstructive sleep apnea syndrome but the mechanisms implicated are not yet well understood. The objective of the present study was to evaluate changes in BP and heart rate (HR) and putative factors after uvulopalatopharyngoplasty and septoplasty in normotensive snorers. Patients (N = 10) were instrumented for 24-h ambulatory BP monitoring, nocturnal respiratory monitoring and urinary catecholamine level evaluation one day before surgery and on the day of surgery. The influence of postsurgery pain was prevented by analgesic therapy as confirmed using a visual analog scale of pain. Compared with preoperative values, there was a significant (P < 0.05) increase in nighttime but not daytime systolic BP (119 ± 5 vs 107 ± 3 mmHg), diastolic BP (72 ± 4 vs 67 ± 2 mmHg), HR (67 ± 4 vs 57 ± 2 bpm), respiratory disturbance index (RDI) characterized by apnea-hypopnea (30 ± 10 vs 13 ± 4 events/h of sleep) and norepinephrine levels (22.0 ± 4.7 vs 11.0 ± 1.3 µg l-1 12 h-1) after surgery. A positive correlation was found between individual variations of BP and individual variations of RDI (r = 0.81, P < 0.01) but not between BP or RDI and catecholamines. The visual analog scale of pain showed similar stress levels on the day before and after surgery (6.0 ± 0.8 vs 5.0 ± 0.9 cm, respectively). These data strongly suggest that the cardiovascular changes observed in patients who underwent uvulopalatopharyngoplasty and septoplasty were due to the increased postoperative RDI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Previous studies describe an imbalance of the autonomic nervous system in Chagas' disease causing increased sympathetic activity, which could influence the genesis of hypertension. However, patients undergoing regular physical exercise could counteract this condition, considering that exercise causes physiological responses through autonomic and hemodynamic changes that positively affect the cardiovascular system. This study aimed to evaluate the effects of an exercise program on blood pressure in hypertensive patients with chronic Chagas' heart disease. METHODS: We recruited 17 patients to a 24-week regular exercise program and used ambulatory blood pressure monitoring before and after training. We determined the differences in the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) from the beginning to the end of the study. RESULTS: The blood pressures were evaluated in general and during periods of wakefulness and sleep, respectively: SBP (p = 0.34; 0.23; 0.85), DBP (p = 0.46; 0.44; 0.94) and MBP (p = 0.41; 0.30; 0.97). CONCLUSIONS: There was no statistically significant change in blood pressure after the 24-week exercise program; however, we concluded that physical training is safe for patients with chronic Chagas' disease, with no incidence of increase in blood pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background: Morbid obesity is directly related to deterioration in cardiorespiratory capacity, including changes in cardiovascular autonomic modulation. Objective: This study aimed to assess the cardiovascular autonomic function in morbidly obese individuals. Methods: Cross-sectional study, including two groups of participants: Group I, composed by 50 morbidly obese subjects, and Group II, composed by 30 nonobese subjects. The autonomic function was assessed by heart rate variability in the time domain (standard deviation of all normal RR intervals [SDNN]; standard deviation of the normal R-R intervals [SDNN]; square root of the mean squared differences of successive R-R intervals [RMSSD]; and the percentage of interval differences of successive R-R intervals greater than 50 milliseconds [pNN50] than the adjacent interval), and in the frequency domain (high frequency [HF]; low frequency [LF]: integration of power spectral density function in high frequency and low frequency ranges respectively). Between-group comparisons were performed by the Student’s t-test, with a level of significance of 5%. Results: Obese subjects had lower values of SDNN (40.0 ± 18.0 ms vs. 70.0 ± 27.8 ms; p = 0.0004), RMSSD (23.7 ± 13.0 ms vs. 40.3 ± 22.4 ms; p = 0.0030), pNN50 (14.8 ± 10.4 % vs. 25.9 ± 7.2%; p = 0.0061) and HF (30.0 ± 17.5 Hz vs. 51.7 ± 25.5 Hz; p = 0.0023) than controls. Mean LF/HF ratio was higher in Group I (5.0 ± 2.8 vs. 1.0 ± 0.9; p = 0.0189), indicating changes in the sympathovagal balance. No statistical difference in LF was observed between Group I and Group II (50.1 ± 30.2 Hz vs. 40.9 ± 23.9 Hz; p = 0.9013). Conclusion: morbidly obese individuals have increased sympathetic activity and reduced parasympathetic activity, featuring cardiovascular autonomic dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The risk of cardiovascular diseases and sleep-disordered breathing increases after menopause. This cross-sectional study focuses on overnight transcutaneous carbon dioxide (TcCO2) measurements and their power to predict changes in the early markers of cardiovascular and metabolic diseases. The endothelial function of the brachial artery, the intima-media thickness of the carotid artery, blood pressure, glycosylated hemoglobin A1C and plasma levels of cholesterols and triglycerides were used as markers of cardiovascular and metabolic diseases. The study subjects consisted of healthy premenopausal women of 46 years of age and postmenopausal women of 56 years of age. From wakefulness to sleep, the TcCO2 levels increased more in postmenopausal women than in premenopausal women. In estrogen-users the increase in TcCO2 levels was even more pronounced than in other postmenopausal women. From the dynamic behaviour of the nocturnal TcCO2 signal, several important features were detected. These TcCO2 features had a remarkable role in the prediction of endothelial dysfunction and thickening of the carotid wall in healthy premenopausal women. In addition, these TcCO2 features were linked with blood pressure, lipid profile and glucose balance in postmenopausal women. The nocturnal TcCO2 profile seems to contain significant information, which is associated with early changes in cardiovascular diseases in middle-aged women. TcCO2 might not only measure the tissue carbon dioxide levels, but the TcCO2 signal variation may also reflect peripheral vasodynamic events caused by increased sympathetic activity during sleep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reliable detection of intrapartum fetal acidosis is crucial for preventing morbidity. Hypoxia-related changes of fetal heart rate variability (FHRV) are controlled by the autonomic nervous system. Subtle changes in FHRV that cannot be identified by inspection can be detected and quantified by power spectral analysis. Sympathetic activity relates to low-frequency FHRV and parasympathetic activity to both low- and high-frequency FHRV. The aim was to study whether intra partum fetal acidosis can be detected by analyzing spectral powers of FHRV, and whether spectral powers associate with hypoxia-induced changes in the fetal electrocardiogram and with the pH of fetal blood samples taken intrapartum. The FHRV of 817 R-R interval recordings, collected as a part of European multicenter studies, were analyzed. Acidosis was defined as cord pH ≤ 7.05 or scalp pH ≤ 7.20, and metabolic acidosis as cord pH ≤ 7.05 and base deficit ≥ 12 mmol/l. Intrapartum hypoxia increased the spectral powers of FHRV. As fetal acidosis deepened, FHRV decreased: fetuses with significant birth acidosis had, after an initial increase, a drop in spectral powers near delivery, suggesting a breakdown of fetal compensation. Furthermore, a change in excess of 30% of the low-to-high frequency ratio of FHRV was associated with fetal metabolic acidosis. The results suggest that a decrease in the spectral powers of FHRV signals concern for fetal wellbeing. A single measure alone cannot be used to reveal fetal hypoxia since the spectral powers vary widely intra-individually. With technical developments, continuous assessment of intra-individual changes in spectral powers of FHRV might aid in the detection of fetal compromise due to hypoxia.