998 resultados para Remnant area
Resumo:
A major factor in the stratospheric collection process is the relative density of particles at the collection altitude. With current aircraft-borne collector plate geometries, one potential extraterrestrial particle of about 10 micron diameter is collected approximately every hour. However, a new design for the collector plate, termed the Large Area Collector (LAC), allows a factor of 10 improvement in collection efficiency over current conventional geometry. The implementation of LAC design on future stratospheric collection flights will provide many opportunities for additional data on both terrestrial and extraterrestrial phenomena. With the improvement in collection efficiency, LAC's may provide a suitable number of potential extraterrestrial particles in one short flight of between 4 and 8 hours duration. Alternatively, total collection periods of approximately 40 hours enhance the probability that rare particles can be retrieved from the stratosphere. This latter approach is of great value for the cosmochemist who may wish to perform sophisticated analyses on interplanetary dust greater than a picogram. The former approach, involving short duration flights, may also provide invaluable data on the source of many extraterrestrial particles. The time dependence of particle entry to the collection altitude is an important parameter which may be correlated with specific global events (e.g., meteoroid streams) provided the collection time is known to an accuracy of 2 hours.
Resumo:
A major priority for cancer control agencies is to reduce geographical inequalities in cancer outcomes. While the poorer breast cancer survival among socioeconomically disadvantaged women is well established, few studies have looked at the independent contribution that area- and individual-level factors make to breast cancer survival. Here we examine relationships between geographic remoteness, area-level socioeconomic disadvantage and breast cancer survival after adjustment for patients’ socio- demographic characteristics and stage at diagnosis. Multilevel logistic regression and Markov chain Monte Carlo simulation were used to analyze 18 568 breast cancer cases extracted from the Queensland Cancer Registry for women aged 30 to 70 years diagnosed between 1997 and 2006 from 478 Statistical Local Areas in Queensland, Australia. Independent of individual-level factors, area-level disadvantage was associated with breast-cancer survival (p=0.032). Compared to women in the least disadvantaged quintile (Quintile 5), women diagnosed while resident in one of the remaining four quintiles had significantly worse survival (OR 1.23, 1.27, 1.30, 1.37 for Quintiles 4, 3, 2 and 1 respectively).) Geographic remoteness was not related to lower survival after multivariable adjustment. There was no evidence that the impact of area-level disadvantage varied by geographic remoteness. At the individual level, Indigenous status, blue collar occupations and advanced disease were important predictors of poorer survival. A woman’s survival after a diagnosis of breast cancer depends on the socio-economic characteristics of the area where she lives, independently of her individual-level characteristics. It is crucial that the underlying reasons for these inequalities be identified to appropriately target policies, resources and effective intervention strategies.
Resumo:
IEEE 802.11 based wireless local area networks (WLANs) are being increasingly deployed for soft real-time control applications. However, they do not provide quality-ofservice (QoS) differentiation to meet the requirements of periodic real-time traffic flows, a unique feature of real-time control systems. This problem becomes evident particularly when the network is under congested conditions. Addressing this problem, a media access control (MAC) scheme, QoS-dif, is proposed in this paper to enable QoS differentiation in IEEE 802.11 networks for different types of periodic real-time traffic flows. It extends the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) by introducing a QoS differentiation method to deal with different types of periodic traffic that have different QoS requirements for real-time control applications. The effectiveness of the proposed QoS-dif scheme is demonstrated through comparisons with the IEEE 802.11e EDCA mechanism.
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
This paper provides a new general approach for defining coherent generators in power systems based on the coherency in low frequency inter-area modes. The disturbance is considered to be distributed in the network by applying random load changes which is the random walk representation of real loads instead of a single fault and coherent generators are obtained by spectrum analysis of the generators velocity variations. In order to find the coherent areas and their borders in the inter-connected networks, non-generating buses are assigned to each group of coherent generator using similar coherency detection techniques. The method is evaluated on two test systems and coherent generators and areas are obtained for different operating points to provide a more accurate grouping approach which is valid across a range of realistic operating points of the system.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
Objective: Several new types of contraception became available in Australia over the last twelve years (the implant in 2001, progestogen intra-uterine device (IUD) in 2003, and vaginal contraceptive ring in 2007). Most methods of contraception require access to health services. Permanent sterilisation and the insertion of an implant or IUD involve a surgical procedure. Access to health professionals providing these specialised services may be more difficult in rural areas. This paper examines uptake of permanent or long-acting reversible contraception (LARCs) among Australian women in rural areas compared to women in urban areas. Method: Participants in the Australian Longitudinal Study on Women's Health born in 1973-78 reported on their contraceptive use at three surveys: 2003, 2006 and 2009. Contraceptive methods included permanent sterilisation (tubal ligation, vasectomy), non-daily or LARC methods (implant, IUD, injection, vaginal ring), and other methods including daily, barrier or "natural" methods (oral contraceptive pills, condoms, withdrawal, safe period). Sociodemographic, reproductive history and health service use factors associated with using permanent, LARC or other methods were examined using a multivariable logistic regression analysis. Results: Of 9,081 women aged 25-30 in 2003, 3% used permanent methods and 4% used LARCs. Six years later in 2009, of 8,200 women (aged 31-36), 11% used permanent methods and 9% used LARCs. The fully adjusted parsimonious regression model showed that the likelihood of a woman using LARCs and permanent methods increased with number of children. Women whose youngest child was school-age were more likely to use LARCs (OR=1.83, 95%CI 1.43-2.33) or permanent methods (OR=4.39, 95%CI 3.54-5.46) compared to women with pre-school children. Compared to women living in major cities, women in inner regional areas were more likely to use LARCs (OR=1.26, 95%CI 1.03-1.55) or permanent methods (OR=1.43, 95%CI 1.17-1.76). Women living in outer regional and remote areas were more likely than women living in cities to use LARCs (OR=1.65, 95%CI 1.31-2.08) or permanent methods (OR=1.69, 95%CI 1.43-2.14). Women with poorer access to GPs were more likely to use permanent methods (OR=1.27, 95%CI 1.07-1.52). Conclusions: Location of residence and access to health services are important factors in women's choices about long-acting contraception in addition to the number and age of their children. There is a low level of uptake of non-daily, long-acting methods of contraception among Australian women in their mid-thirties.
Resumo:
This chapter contains sections titled: Introduction ICZM and sustainable development of coastal zone International legal framework for ICZM Implementation of international legal obligations in domestic arena Concluding remarks References
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
Synthetic goethite and thermally treated goethite at different temperatures were used to remove phosphate from sewage. The effect of annealing temperature on phosphate removal over time was investigated. X-ray diffraction(XRD), transmission electron microscopy (TEM), N2 adsorption and desorption (BET), and infrared emission spectrum (FT-IES) were utilized to characterize the phase, morphology, specific surface area, pore distribution, and the surface groups of samples. The results show that annealed products of goethite at temperatures over 250 °C are hematite with the similar morphology as the original goethite with different hydroxyl groups and surface area. Increasing temperature causes the decrease in hydroxyl groups, consequential increase in surface area at first and then experiences a decrease (14.8–110.4–12.6 m2/g) and the subsequent formation of nanoscale pores. The variation rate of hydroxyl groups and surface area based on FT-IES and BET, respectively, are used to evaluate the effect of annealing temperature on phosphate removal. By using all of the characterization techniques, it is concluded that the changes of phosphate removal basically result from the total variation rate between hydroxyl groups and surface area.
Resumo:
Two recent decisions of the Supreme Court of New South Wales in the context of obstetric management have highlighted firstly, the importance of keeping legible, accurate and detailed medical records; and secondly, the challenges faced by those seeking to establish causation, particularly where epidemiological evidence is relied upon...
Resumo:
The surface area of inhaled particles deposited in the alveolar region, as reported by the TSI nanoparticle surface area monitor (NSAM), was compared with the corresponding value estimated by a TSI scanning mobility particle sizer (SMPS) for a range of environmentally relevant aerosols, including petrol emissions, ETS, laser printer emissions, cooking emissions and ambient aerosols. The SMPS values were based on a mobility size distribution assuming spherical particles using the appropriate size-dependent alveolar-deposition factors provided by the ICRP. In most cases, the two instruments showed good linear agreement. With petrol emissions and ETS, the linearity extended to over 103 μm2 cm-3. With printer emissions, there was good linearity up to about 300 μm2 cm-3 while the NSAM increasingly overestimated the surface area at higher concentrations. The presence of a nucleation event in ambient air caused the NSAM to over-estimate the surface area by a factor of 2. We summarize these results and conclude that the maximum number concentration up to which the NSAM is accurate clearly depends on the type of aerosol being sampled and provide guidance for the use of the instrument.
Resumo:
Objectives Early childhood caries is a highly destructive dental disease which is compounded by the need for young children to be treated under general anaesthesia. In Australia, there are long waiting periods for treatment at public hospitals. In this paper, we examined the costs and patient outcomes of a prevention programme for early childhood caries to assess its value for government services. Design Cost-effectiveness analysis using a Markov model. Setting Public dental patients in a low socioeconomic, socially disadvantaged area in the State of Queensland, Australia. Participants Children aged 6 months to 6 years received either a telephone prevention programme or usual care. Primary and secondary outcome measures A mathematical model was used to assess caries incidence and public dental treatment costs for a cohort of children. Healthcare costs, treatment probabilities and caries incidence were modelled from 6 months to 6 years of age based on trial data from mothers and their children who received either a telephone prevention programme or usual care. Sensitivity analyses were used to assess the robustness of the findings to uncertainty in the model estimates. Results By age 6 years, the telephone intervention programme had prevented an estimated 43 carious teeth and saved £69 984 in healthcare costs per 100 children. The results were sensitive to the cost of general anaesthesia (cost-savings range £36 043–£97 298) and the incidence of caries in the prevention group (cost-savings range £59 496–£83 368) and usual care (cost-savings range £46 833–£93 328), but there were cost savings in all scenarios. Conclusions A telephone intervention that aims to prevent early childhood caries is likely to generate considerable and immediate patient benefits and cost savings to the public dental health service in disadvantaged communities.
Resumo:
Background To explore the impact of geographical remoteness and area-level socioeconomic disadvantage on colorectal cancer (CRC) survival. Methods Multilevel logistic regression and Markov chain Monte Carlo simulations were used to analyze geographical variations in five-year all-cause and CRC-specific survival across 478 regions in Queensland Australia for 22,727 CRC cases aged 20–84 years diagnosed from 1997–2007. Results Area-level disadvantage and geographic remoteness were independently associated with CRC survival. After full multivariate adjustment (both levels), patients from remote (odds Ratio [OR]: 1.24, 95%CrI: 1.07-1.42) and more disadvantaged quintiles (OR = 1.12, 1.15, 1.20, 1.23 for Quintiles 4, 3, 2 and 1 respectively) had lower CRC-specific survival than major cities and least disadvantaged areas. Similar associations were found for all-cause survival. Area disadvantage accounted for a substantial amount of the all-cause variation between areas. Conclusions We have demonstrated that the area-level inequalities in survival of colorectal cancer patients cannot be explained by the measured individual-level characteristics of the patients or their cancer and remain after adjusting for cancer stage. Further research is urgently needed to clarify the factors that underlie the survival differences, including the importance of geographical differences in clinical management of CRC.