983 resultados para Released.
Resumo:
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Resumo:
It was previously shown that the Haemonchus contortus apical gut surface proteins p46, p52, and p100 induced protective immunity to challenge infections in goats. Here, it is shown that the three proteins are all encoded by a single gene (GA1) and initially expressed in adult parasites as a polyprotein (p100GA1). p46GA1 and p52GA1 are related proteins with 47% sequence identity, including a cysteine-containing region, which appears to confer secondary structure to these proteins, and a region with sequence similarity to bacterial Tolb proteins. GA1 protein expression is regulated during the life cycle at the level of transcript abundance. Only p52GA1 has characteristics of a glycosylinositolphospholipid membrane-anchored protein. However, both p46GA1 and p52GA1 were released from the gut membrane by phosphatidylinositol specific-phospholipase C, suggesting that p46GA1 membrane association depends on interactions with a glycosylinositolphospholipid gut membrane protein. Finally, GA1 proteins occur in abomasal mucus of infected lambs, demonstrating possible presentation to the host immune system during H. contortus infection. The results identify multiple characteristics of the GA1 proteins that should be considered for design of recombinant antigens for vaccine trials and that implicate a series of cellular processes leading to modification and expression of GA1 proteins at the nematode apical gut surface.
Resumo:
Prothoracicotropic hormone (PTTH) is the central cerebral neurohormone in insect development. Its release has been believed for decades to be confined to one (or two) critical moments early in each developmental stage at which time it triggers prolonged activation of the prothoracic glands to synthesize and release the steroid molting hormones (ecdysteroids), which elicit developmental responses in target tissues. We used an in vitro assay for PTTH released from excised brains of the bug Rhodnius prolixus and report that release of PTTH does occur at the expected time on day 6, but that this release is merely the first in a daily rhythm of release that continues throughout most of the 21 days of larval-adult development. This finding, together with reports of circadian control of ecdysteroid synthesis and titer throughout this time, raises significant challenges to several features of the current understanding of the hormonal control of insect development. New questions are raised concerning the function(s) of PTTH, its relationship with the prothoracic glands, and the significance of circadian rhythmicity throughout this endocrine axis. The significance of the reported observations derives from the set of entirely new questions they raise concerning the regulation of insect development.
Resumo:
The nature of an L-arginine-derived relaxing factor released from vascular smooth muscle cells cultured on microcarrier beads and stimulated for 20 h with interleukin 1 beta was investigated. Unlike the unstable relaxation elicited by authentic nitric oxide (NO) in a cascade superfusion bioassay system, the effluate from vascular smooth muscle cells induced a stable relaxation that was susceptible to inhibition by oxyhemoglobin. Three putative endogenous NO carriers mimicked this stable relaxing effect: S-nitroso-L-cysteine, low molecular weight dinitrosyl-iron complexes (DNICs), and the adduct of NG-hydroxy-L-arginine (HOArg) with NO. Inactivation of S-nitroso-L-cysteine by Hg2+ ions or trapping of DNICs with agarose-bound bovine serum albumin abolished their relaxing effects, whereas that of the vascular smooth muscle cell effluate remained unaffected. In addition, neither S-nitrosothiols nor DNICs were detectable in the effluate from these cells, as judged by UV and electron spin resonance (ESR) spectroscopy. The HOArg-NO adduct was instantaneously generated upon reaction of HOArg with authentic NO under bioassay conditions. Its pharmacological profile was indistinguishable from that of the vascular smooth muscle cell effluate, as judged by comparative bioassay with different vascular and nonvascular smooth muscle preparations. Moreover, up to 100 nM HOArg was detected in the effluate from interleukin 1 beta-stimulated vascular smooth muscle cells, suggesting that sufficient amounts of HOArg are released from these cells to spontaneously generate the HOArg-NO adduct. This intercellular NO carrier probably accounts for the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells and also from other NO-producing cells, such as macrophages and neutrophils.
Resumo:
The immunophilins of the FK506-binding protein (FKBP) family are intracellular proteins that bind the immunosuppresants FK506 and rapamycin. In this study we show that HMC-1 mast cells sensitized with IgE release FKBP12 upon stimulation with anti-IgE. The release is rapid and not affected by actinomycin D or cycloheximide, suggesting that it is due to exocytosis from a storage compartment. FKBP12 from HMC-1 mast cells exhibits biological activity. When applied extracellularly to human neutrophils, it induces transient changes in the intracellular Ca2+ concentration ([Ca2+]i) due to Ca2+ release from intracellular stores. Inhibition of [Ca2+]i changes by ruthenium red and ryanodine indicates that ryanodine receptor/Ca2+ release channels are involved in FKBP12-induced Ca2+ signaling. Neutrophil activation by mast cell-derived FKBP12 is prevented by complexing FKBP12 with FK506 or rapamycin. These results demonstrate that extracellular FKBP12 functions as a cytokine in cell-to-cell communication. They further suggest a pathophysiological role for FKBP12 as a mediator in immediate or type I hypersensitivity and may have implications for novel therapeutic strategies in the treatment of allergic disorders with FK506 and rapamycin.
Resumo:
Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68 to 80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.
Resumo:
After months of delays, leaks and rumours, the Kyrgyzstan Inquiry Commission (KIC) has finally published on 3 May its report looking into the events of 10-15 June 2010 in the Kyrgyz oblasts of Osh and Jalalabad, which led to the death of 470 people, 74 percent of them ethnic Uzbeks. The Kyrgyz authorities have reacted to this report arguing that the report's authors relied too much on accounts by Uzbeks and that the research was incomplete.