962 resultados para Relative growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally tubers of cyperus (Cyperus rotundus) and its extracts have been used for alluring fish during harvesting in India. An experiment was conducted to evaluate its feeding stimulatory activity and effect on the growth of a commercially important freshwater fish, Cirrhinus mrigala. Three isonitrogenous and isocaloric formulated diets viz. plant ingredient based control and control supplemented with cyperus tuber (CS) at 1% and 5% levels were fed to the fingerlings of mrigal, C. mrigala (2.68+0.20 g) for a period of 45 days. The growth performance and the activity of metabolic enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), in liver, gill and muscle tissues of mrigal were studied during every 15 days interval. Highest relative growth (72.28%) was obtained in the mrigal fed with the diet containing 5% cyperus (5% CS), while the relative growths were 66.18% and 43.40% for the fish fed with the 1% CS diet and control respectively. The activities of AST and ALT were significantly higher (p<0.01) in both 1% and 5% CS diets as compared to the control in all the tissues studied. Higher aminotransferase activities were observed in the tissues of 5% CS group than in those of 1% CS group throughout the experimental period. The observed higher enzymatic activity was concomitant with the higher growth rate in fish. The results suggested that cyperus tuber supplementation increased feed palatability and growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mean weight percentage survival, relative growth increment, net production and feed conversion value of S. serrata stocked in monoculture at different stocking densities are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

大气CO2浓度的增加已经成为不可争议的事实。预计本世纪末大气CO2浓度将增加到约700µmol mol-1。森林年光合产量约占陆地生态系统年光合产量的70%。森林树木是一个巨大的生物碳库,约占全球陆地生物碳库的85%。森林树木对CO2的固定潜力是缓解由大气CO2浓度升高引起的未来全球气候变化问题的决定性因子之一。红桦(Betula albosinensis Burk.)是川西亚高山采伐迹地自然或人工恢复的重要树种。本研究以1a红桦幼苗为模式植物,采用人工模拟的方法,研究CO2浓度升高对不同种内竞争强度(种群水平)下红桦幼苗的生理特征、生长、干物质积累及其分配的影响,探讨在种内竞争生长条件下红桦幼苗的“光合适应机理”与生长特征,为西南亚高山森林生产力对未来全球变化的预测提供重要参考。 本研究的主要结果如下: 1)在种内竞争生长条件下红桦幼苗经过CO2浓度升高熏蒸4个月后,叶片出现“光合适应”现象。与对照相比,低种植密度(28株m-2)和高种植密度(84株m-2)条件下的红桦幼苗净光合速率(A)、气孔导度(gs)、蒸腾速率(E)、表观量子产量(AQY)和羧化速率(CE)显著降低,而水分利用效率(WUE)则显著提高。CO2浓度升高处理的红桦幼苗叶片Rubisco活性、单位叶面积N浓度、叶绿素a、叶绿素b和类胡萝卜素浓度都显著降低。但CO2浓度对红桦幼苗的叶绿素a与叶绿素b的比值没有显著影响。CO2浓度升高显著增加红桦幼苗单位叶面积的非结构性碳水化合物(TNC)浓度,结果是红桦幼苗的比叶面积(SLA,cm2 g-1)显著降低。 2)与对照相比,CO2浓度升高处理的红桦幼苗高、基径、单叶面积和侧枝的相对生长速率(R GR)显著提高,尤其在试验处理的早期。CO2浓度升高既增加单株红桦幼苗总叶片数量又增加单叶面积,结果是单株红桦幼苗的总叶面积比对照显著增加。 3)CO2浓度升高处理显著增加红桦幼苗干物质积累(尤其是细根生物量),改变了红桦幼苗生物量的分配格局。与对照相比,CO2浓度升高处理的红桦幼苗叶重比(LWR)、叶面积比(LAR)、叶根重比(Wl/Wr)和源汇重比(leaf weight to non-leaf weight ratio, Wsource/Wsink)显著下降(高种植密度的LWR除外),而根冠比(R/S)则显著增加。在两种种植密度条件下,CO2浓度升高显著增加红桦幼苗根生物量的分配比率,显著降低叶片的生物量分配比率,对主茎、侧枝以及地上生物量的分配比率不变或约有下降。 总之,长期生长在CO2浓度升高条件下的红桦幼苗光合能力下降,并伴随Rubisco活性、叶N浓度、光合色素浓度的显著降低以及TNC浓度的显著增加。支持树木光合速率下降与Rubisco活性、叶N浓度下降以及TNC浓度增加紧密相关的假设。CO2浓度升高处理红桦幼苗的早期相对生长速率大大高于对照,而后期迅速下降,说明红桦幼苗生物量的显著增加主要归功于CO2浓度升高的早期促进作用和叶面积的显著增加。CO2浓度升高显著增加红桦幼苗根系生物量和根冠比,表明红桦幼苗“额外”固定的C向根系转移。 The steady increae of atmospheric CO2 concentration([CO2])has been inevitable fact. Models predict that the atmospheric [CO2] will increase to about 700µmol mol-1 at the end of the twenty-first century. As trees constitute a majoor carbon reservoir–85% of total plant carbon is found in forest, and their ability to sequester carbon is a key determinant of future global change problems caused by increases in atmospheric CO2. In addition to the role of forests in the global carbon cycle, inceased growth could be of economic benefit, for example, offsetting deleterious effects of climatic changes. Betula albosinensis (Burk.) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of mountain forest area, and also is one of important tree species for afforestation in logged area, in southwesten China. In this experinment, Betula albosinensis seedling (one-year-old) was used as the model plant. B. albosinensis seedlings were grown under two all-day [CO2], ambient (about 350 µmol·mol-1) and elevated [CO2] (about 700 µmol·mol-1), and two planting densities of 28 plants per m2 and 84 plants per m2. The objectives were to characterize birch mature leaf photosynthesis, growth, mass accumulation and allocation responses to long-tern elevated growth [CO2] under the influences of neighbouring plants, and to assess whether elevated [CO2] regulated birch mature leaf photosynthetic capacity, in terms of leaf nitrogen concentration (leaf [N]), activity of ribulose bisphosphate carboxygenase (Rubisco), Rubisco photosynthetic efficiency, and total nonstructural carbohydrates (TNC) concentration, and also to provide a strong reference to predict the productivity of subalpine forests under the future global changes. The results are as follows: 1) B.albosinensis seedlings exposed to elevated [CO2] for 120 days, photosynthetic acclimation phenomena occurred. At two planting densities, leaves of birch seedlings grown under elevated [CO2] had lower net photosynthetic rate (A), stomatal conductance (gs), transpiration (E), apparent quantum yield (AQY) and carboxylated efficiency (CE) and higher water use efficiency (WUE), compared to those of B.albosinensis seedlings grown under ambient [CO2]. Based on the leaf area, leaf [N], Rubisco activity and photosynthetic pigments concentrations of B. albosinensis seedlings grown under elevated [CO2] were significantly lower than those grown under ambient [CO2]. The ratio of chlorophyll a to chlorophyll b concentration was not affected by elevated [CO2]. Under elevated [CO2], the TNC concentration per unit leaf area significantly increased, resulting in significant decrease in specific leaf area. Thus leaf photosynthetic capacity of B. albosinensis seedlings would perform worse under rising atmospheric [CO2] and the influences of neighbouring plants. 2) Under elevated [CO2], the relative growth rate (RGR) of B. albosinensis seedlings height, basal diameter, a leaf area and branch length significantly increased, especially at the initial stage of exposure to elevated [CO2], and a leaf area and leaf numbers per B. albosinensis seedling also significantly increased. Thus the total leaf area per B. albosinensis seedling was significantly increased under elevated [CO2]. 3) As the increase of RGR and total leaf area, biomass of B. albosinensis seedling grown elevated [CO2] was higher, compared to that of B.albosinensis seedlings grown at ambient [CO2]. Elevated [CO2] changed the biomass allocation pattern of B. albosinensis seedling. At two planting densities, B. albosinensis seedlings grown elevated [CO2] had lower leaf weight to total weight ratio (LWR), leaf area to total weight ratio (LAR) and leaf weight to non-leaf weight ratio (Wsource/Wsink), but higher root weight to shoot weight ratio (R/S), compared to those of B.albosinensis seedlings grown at ambient [CO2]. Under elevated [CO2], roots biomass to total biomass ratio was signigicantly increased, leaves biomass to total biomass ratio was significantly decreased. The main stem and branch biomass to total biomass ratio were not affected by elevated [CO2]. In conclusion, our results supported the hypothesis that the decline in photosynthetic capacity of C3 plants will appear after long-term exposure to elevated [CO2], accompanying with the significant decrease in Rubisco activity, leaf N concentration, photosynthetic pigments concentration, and significant increase in total non-structural carbohydrates concentration. Our results also have shown that the increase of biomass of B. albosinensis seedlings should be attributed to initial stimulation on RGR and total leaf area resulted from elevated [CO2]. Under elevated [CO2], the extra carbon sequestered by B.albosinensis seedlings transferred into under-ground part because of increase in root biomass and R/S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本研究通过粗枝云杉不同种群进行的温室半控制试验,采用植物生态学、生理学和生物化学的研究方法,系统地研究了粗枝云杉不同种群抗旱性的生长、形态、生理和生化机理,并结合有关研究进行综合分析,得出主要研究结论如下: 1.粗枝云杉对干旱胁迫的综合反应 粗枝云杉在干旱胁迫下的适应机制为:(1)相对生长速率及植株结构的调整:干旱胁迫下虽然植株相对生长速率显著降低,且有相对较多的生物量向根部分配,但并未发现细根/总根比增加。(2)粗枝云杉对干旱胁迫的光合作用表现为:干旱胁迫显著地降低了控制的理想条件下的气体交换,但干旱胁迫对PSII最大光化学效率(Fv/Fm)没有影响,表明干旱并未影响到光合机构。(3)干旱还影响了很多生理生化过程,包括渗透调解物质(游离脯氨酸)、膜脂过氧化产物、脱落酸(ABA)含量的增加,以及保护酶活性的升高。这些结果证明植物遭受干旱胁迫后发生了一系列的形态、生理和生化响应,这些变化能提高干旱时期植物的存活和生长能力。 2.粗枝云杉不同种群对干旱胁迫反应的种群差异 粗枝云杉三个种群-干旱种群(四川丹巴和甘肃迭部)和湿润种群(四川黑水)对干旱适应不同,这种不同应归因于它们采用的用水策略不同:在水分良好和干旱胁迫条件下,受试种群在相对生长速率和水分利用效率(WUE)方面都表现出显著的种群间差异。与湿润种群相比,干旱种群在两种水分条件下有更高的WUE。粗枝云杉不同种群的碳同位素组分(δ13C)只在干旱胁迫下有显著差异,并且这种差异在水分良好时比干旱胁迫条件下小,说明生理响应和干旱适应性之间的关系受植物内部抗旱机制和外部环境条件(如水分可利用性)或两者互作效应的影响。这些结果说明干旱种群和湿润种群所采用的用水策略不同。干旱种群有更强的抗旱能力,采用的是节水型的用水策略,而湿润种群抗旱能力较弱,采用的是耗水型的用水策略。 3. 遮荫对粗枝云杉不同种群抗旱性影响 干旱胁迫显著降低了全光条件下叶相对含水量(RWC)、相对生长速率、气体交换参数、PSII的有效量子产量(Y),提高了非光化学猝灭效率(qN)、水分利用效率、脯氨酸(PRO)积累、脱落酸(ABA)含量及保护酶活性。然而这种变化在遮荫条件下不明显。我们得出结论适度遮荫降低了干旱对植物的胁迫作用。另一方面,在干旱条件下,与湿润种群相比,干旱种群抗旱性更强,表现在干旱种群净光合速率与单位重量上叶氮含量(Nmass)降低较少。另外,干旱种群表现出更为敏感的气孔导度,更高的热耗散能力(qN)能力、用水效率、ABA积累、保护酶活性,以及更低的总用水量、相对生长速率。这一结果表明这两种群采用不同的生理策略对干旱和遮荫做出反应。许多生长和生理反应差异与这两个种群原产地气候条件相适应。 4. 外源脱落酸(ABA)喷施对粗枝云杉不同种群抗旱性影响 外源ABA喷施在干旱和水分良好条件下均不同程度地提高了根/茎比,表明根和茎对ABA敏感程度不同。实验结果还表明,外源ABA喷施对这两个种群在干旱胁迫期间影响不同。干旱胁迫期间,伴随着ABA喷施,湿润种群净光合速率(A)显著降低,而干旱种群净光合速率变化不明显。另一方面,外源ABA喷施显著提高了干旱条件下干旱种群的单位叶面积重(LMA)、根/茎比、细根/总根(Ft)比、水分利用效率(WUE)、ABA含量, 以及保护酶活性。然而,外源ABA喷施对湿润种群的上述测定指标没有显著影响。这一结果表明干旱种群对外源ABA喷施更为敏感, 反应在更大的气孔导度降低,更高的生物量可塑性,及更高的水分利用效率、ABA含量和保护酶活性。综上所述,我们得出结论,粗枝云杉对外源ABA敏感性因种群的不同而不同。该研究结果可为两个明显不同种群在适应分化方面提供强有力的证据。 Arid or semi-arid land covers more than half of China's land territory. In arid systems, severe shortages of soil water often coincide with periods of high temperatures and high solar radiation, producing multiple stresses on plant performance. Protection from high radiation loads in shaded microenvironments during drought may compensate for a loss of productivity due to reduced irradiance when water is available. Additionally, ABA, a well-known stress-inducible plant hormone, has long been studied as a potential mediator for induction of drought tolerance in plants. Picea asperata Mast., which is one of the most important tree species used for the production of pulp wood and timber, is a prime reforestation species in western China. In this experiment, different population of P. asperata were used as experiment material to study the adaptability to drought stress and population differences in adaptabiliy, and the effects of shade and exogenous abscisic acid (ABA) application on the drought tolerance. Our results cold provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem in the arid and semi-arid area, and provide a strong evidence for adaptive differentiation of different populations, and so may be used as criteria for species selection and tree improvement. The results are as follows: 1. A large set of parallel response to drought stress Drought stress caused pronounced inhibition of the growth and increased relatively dry matter allocation into the root; drought stress also caused pronounced inhibition of photosynthesis, while drought showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm) in dark-adapted leaves, indicating that drought had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, drought reduced the quantum yield of PSII electron transport (Y) and increased the non-photochemical quenching (qN). Drought also affected many physiological and biochemical processes, including increases in superoxide dismutase (SOD), ascorbate peroxidase (APX) activities, malondialdehyde and ABA content. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods. 2. Difference in adaptation to drought stress between contrasting populations of Picea asperata There were significant population differences in growth, dry matter allocation and water use efficiency. Compared with the wet climate population (Heishui), the dry climate population (Dan ba and Jiebu) showed higher LMA, fine root/total root ratio and water use efficiency under drought-stressed treatments. The results suggested that there were different water-use strategies between the dry population and the wet population. The dry climate population with higher drought tolerance may employ a conservative water-use strategy, whereas the wet climate population with lower drought tolerance may employ a prodigal water-use strategy. These variations in drought responses may be used as criteria for species selection and tree improvement. 3. The effects of shade on the drought tolerance For both populations tested, drought resulted in lower needle relative water content (RWC), relative growth rate (RGR), gas exchange parameters and effective PSII quantum yield (Y), and higher non-photochemical quenching (qN), water use efficiency (WUE), proline (PRO) and abscisic acid (ABA) accumulation, superoxide dismutase (SOD), ascorbate peroxidase (APX) activities as well as malondialdehyde (MDA) levels and electrolyte leakage in sun plants, whereas these changes were not significant in shade plants. Our study results implied that shade, applied together with drought, ameliorated the detrimental effects of drought. On the other hand, compared with the wet climate population, the dry climate population was more tolerant to drought in the sun treatment, as indicated by less decreases in A and mass-based leaf nitrogen content (Nmass), more responsive stomata, greater capacity for non-radiative dissipation of excitation energy as heat (analysed by qN), and higher WUE,higher level of antioxidant enzyme activities,higher ABA accumulation as well as lower MDA content and electrolyte leakage. Many of the differences in growth and physiological responses reported here are consistent with the climatic differences between the locations of the populations of P. asperata. 4. The effects of exogenous abscisic acid (ABA) application on the drought tolerance For both populations tested, exogenous ABA application increased root/shoot ratio (Rs) under well-watered and drought-stressed conditions, indicating that there was differential sensitivity to ABA in the roots and shoots. However, it appeared that ABA application affected the two P. asperata populations very differently during drought. CO2 assimilation rate (A) was significantly decreased in the wet climate population, but only to a minor extent in the dry climate population following ABA application during soil drying. On the other hand, ABA application significantly decreased stomatal conductance (gs), transpiration rate (E) and malondialdehyde (MDA) content, and significantly increased leaf mass per area (LMA), Rs, fine root/total root ratio (Ft), water use efficiency (WUE), ABA contents, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities under drought condition in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet population plants. The results clearly demonstrated that the dry climate population was more responsive to ABA application than the wet climate population, as indicated by the strong stomata closure and by greater plasticity of LMA and biomass allocation, as well as by higher WUE, ABA content and anti-oxidative capacity to defense against oxidative stress, possibly predominantly by APX. We concluded that sensitivity to exogenous ABA application is population dependent in P. asperata. Our results provide strong evidence for adaptive differentiation between populations of P. asperata.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10-28 degrees C) and irradiances ( 10, 60 mu mol photons m(-2)s(-1)) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10-25 degrees C, and have the highest relative growth rate at 20 degrees C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 mu mol photons m(-2)s(-1) was more suitable than 10 mu mol photons m(-2)s(-1). The optimum temperature and irradiance for the development of seedlings was 20 degrees C and 60 mu mol photons m(-2)s(-1), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although studies show that grazing and browsing by herbivores have marked effects on host plants, the mechanisms remain unclear. The objective of this study is to determine the effects of sheep saliva on host plant growth. Sheep saliva was manually applied to clipped plants of two different life forms, a semi-shrub, Artemisia frigida Willd., and a herbaceous species, Leymus chinensis (Trin.) Tzevel. The results showed that sheep saliva significantly enhanced aboveground net primary productivity (ANPP) and the ratio of ANPP to belowground net primary productivity (BNPP) for both species. This indicated that sheep saliva promotes aboveground compensatory growth and allocation of photosynthate to aboveground for both plant species. Sheep saliva stimulated only tillering of L. chinensis. Regardless of saliva application, clipping significantly decreased BNPP and plant height, but significantly increased the number of branches or tillers for both plant species. The relative growth rates (RGRs) on both species were significantly greater after clipping with saliva compared with control and clipping without saliva treatments. In addition, RGR of the herbaceous species L. chinensis was faster than that of the semi-shrub A. frigida after application of saliva. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho é constituído por uma revisão bibliográfica e uma série de estudos científicos experimentais visando a melhoria do conhecimento da ecologia de germinação e resposta ao estresse hídrico em arbustos autóctones. Estes estudos pretendem contribuir para o conhecimento da ecologia de espécies autóctones na fase de germinação e estabelecimento inicial das plântulas através da comparação da resposta de sementes de diferentes proveniências. Os primeiros três capítulos focam-se no estudo dos efeitos de pré-tratamentos na germinação de espécies arbustivas com diferentes estratégias de regeneração e dormência da semente, enquanto os dois últimos capítulos incidem sobre o efeito de diferentes condições de disponibilidade de água na germinação e estabelecimento inicial de plântulas com potencial para restauro ecológico. Este estudo procura abordar aspetos importantes para o estudo e validação do uso de espécies alvo para o restauro ecológico em zonas Mediterrânicas, contribuindo deste modo para a melhoria do conhecimento da ecologia destas espécies. A germinação foi estimulada por pré-tratamentos de calor em quatro das cinco espécies cuja época de dispersão da semente na primavera-verão. As sementes provenientes do sul tenderam a germinar melhor, sendo ao mesmo tempo mais pequenas. Por outro lado, a germinação em espécies cuja dispersão da semente ocorre no outono-inverno variou de acordo com o tipo de dormência da semente. A germinação foi em geral favorecida pela estratificação a frio na espécie apresentando dormência fisiológica mas foi negativamente afetada na espécie que não apresenta dormência. Esta resposta não foi, no entanto, inequívoca pois foi dependente da proveniência estudada. O efeito da estratificação a frio teve em geral um efeito mais positivo ou menos negativo nas sementes provenientes do norte em comparação com as outras proveniências. O stress-osmótico teve um efeito negativo consistente na germinação de Pistacia lentiscus e outro fator que também afetou significativamente a germinação foi a variabilidade intra-populacional entre plantas mãe. As duas proveniências apresentaram diferentes graus de associação entre a germinação e/ou caracteres morfológicos da semente ou planta mãe. Quanto à fase de estabelecimento inicial, o baixo conteúdo em água teve um claro efeito negativo no investimento relativo em biomassa acima do solo e um efeito positivo no investimento relativo em biomassa abaixo do solo em Arbutus unedo. Esta resposta não foi inequívoca, uma vez que as proveniências diferiram em adaptações morfológicas ao baixo conteúdo em água. As plântulas da proveniência mais húmida revelaram uma taxa de crescimento relativo superior mas, ao mesmo tempo, uma fraca adaptação às condições de baixa disponibilidade de água, quando comparadas com as outras proveniências. Ao contrário, as plântulas da proveniência seca com verão mais quente apresentaram semelhantes diâmetro do colo da raiz, peso seco de folhas e performance fisiológica sob os dois regimes de irrigação. Os resultados obtidos revelam diferenças significativas na germinação e desenvolvimento inicial entre as distintas proveniências que poderão estar relacionadas com adaptações ao clima dos locais de origem. Os desenvolvimentos futuros do estudo dos mecanismos subjacentes às adaptações observadas poderiam contribuir para a melhoria das previsões de sucesso do estabelecimento inicial em diferentes populações de plantas, permitindo aumentar a confiança e efetividade de custos nas decisões relacionadas com ações de restauro ecológico em cenários de alterações climáticas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 18 de Dezembro de 2013, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myzus persicae (Sulzer) was reared continuously for over thirty years (until it died out in December 2008) on a totally defined synthetic artificial diet, the procedure for which is described. Development time was extended on diet compared with rearing on Brussels sprout plants (Brassica oleracea L. var. gemmifera L.), and generation time was further increased by an added pre-reproductive period of 4 days. Fecundity was reduced by about two-thirds, and mean relative growth rate in weight (MRGR) was only 60% in comparison with plant-reared aphids. Applying 2 kg/cm(2) pressure to a 10% sucrose solution extended the adult longevity of Aphis fabae Scopoli by less than I day. In contrast, a short experience of half-strength diet Caused a sharp rise in honeydew excretion by A. fabae for several hours, and alternating full-strength diet with diluted diets (including water) Caused a greater weight increase. The poor performance of aphids on diet thus seems to have a behavioural rather than a mechanical explanation. The diet, designed to give optimal performance of the aphids, has proved not to be useful for nutritional studies, as any change is deleterious. Areas of aphid research where the diet has been useful, however, are studies on repellents/attractants/toxins, role of symbionts, maintenance of genotype collections, work on parasitoid behaviour in relation to plant chemistry, and collection of aphid saliva.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin - good quality introduced host) and P. contorta (Alaskan seed origin - poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of lai-ge birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory.