970 resultados para Relative density


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hollow sphere cellular aluminium (HSCA) samples were fabricated by bonding together two kinds of single aluminium hollow spheres with the same outside diameter of 4 mm but different wall thicknesses of 0.1 mm and 0.3 mm, in which the hollow spheres with the thinner sphere wall thickness were used as artificial defects. Four types of HSCA samples with the same relative density but various distributions of artificial defects were prepared by simple cubic packing. For comparing, HSCA sample without defective hollow spheres inside was also prepared. The effects of the distribution of the artificial defects on the deformation behaviours and mechanical properties were investigated by compressive tests. Results indicated that the nominal stress - nominal strain curve and the deformation behavior of the HSCA samples varied with the distribution of the artificial defects in spite of the same relative density. It is therefore suggested that the deformation behavior and mechanical property of cellular materials were also significantly affected by the distribution of defects. In particular, the plateau stress of the HSCA samples increased with the decrease in number of contact points between the normal hollow spheres and the defective hollow spheres in the loading direction during deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary theory suggests that alternative colour morphs (i.e. genetically controlled phenotypes) may derive similar fitness under frequency-dependent selection. Here we experimentally demonstrate opposing effects of frequency-dependent social environments on plasma hormone levels (testosterone and corticosterone) and immune function between red- and black-headed male morphs of the Gouldian finch (Erythrura gouldiae). Red-headed males are highly sensitive to changes in the social environment, especially towards the relative density of their own aggressive morph, exhibiting high stress responses and immunosuppression in socially competitive environments. In contrast, the non-aggressive black-headed males follow a more passive strategy that appears to buffer them against social stresses. The differential effect of hormones on aggressive behaviour and immune performance reinforces the contrasting behavioural strategies employed by these colour morphs, and highlights the importance of the social environment in determining the individual basis of behavioural and physiological responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of hydrogen content on the compaction of Ti–6Al–4V powder at low temperatures, namely 500 °C, using equal channel angular pressing (ECAP) with back pressure has been investigated. The properties of the compacts before and after a heat treatment and de-hydrogenation cycle have been determined. Compaction of powder by ECAP (500 °C and 260 MPa) has shown maximum levels of relative density of 99.3% and 99.4% when charged with 0.05–0.1 wt.% and 0.61–0.85 wt.% of hydrogen, respectively. After the de-hydrogenation heat treatment the diffusion bonding between individual powder particles was completed and the microstructure was altered, depending on the level of hydrogen content. Two local maxima of 99.2% and 98.1% were observed in the measured density of consolidated compacts for hydrogen contents between 0.05 wt.% and 0.1 wt.% and between 0.61 wt.% and 0.85 wt.%, respectively. However, the mechanical properties of the compacts within these two ranges of hydrogen content were significantly different due to a difference in the observed microstructure. An exceptionally high ductility of 29%, in combination with a relatively high strength of ~560 MPa, was measured in a shear punch test on specimens which had a prior hydrogen level of 0.05 wt.% before the heat treatment. It was shown that material consolidated from powder hydrogenated to low levels of hydrogen before compaction has the potential to offer substantial improvements in mechanical properties after a suitable heat treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fracture behavior of titanium open foam is characterized and the R-curves of crack propagation from pre-cracks are measured. The crack growth has been optically observed, the measured initiation toughness, JIC, has been analyzed and the effect of material morphology on the JIC is discussed. The fracture toughness was found to be dependent on the expanding crack bridging zone at the back of the crack tip. The compact tension specimens also have some plastic collapse along the ligaments and it has shown that the titanium foam with a higher relative density is tougher. The non-uniform stressing within the plastic zone at the crack tip and the plastic collapse of cell topology behind the tip was found to be the primary cause of the R-curve behavior in low relative density titanium foams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ranking method is a key element of Content-based Image Retrieval (CBIR) system, which can affect the final retrieval performance. In the literature, previous ranking methods based on either distance or probability do not explicitly relate to precision and recall, which are normally used to evaluate the performance of CBIR systems. In this paper, a novel ranking method based on relative density is proposed to improve the probability based approach by ranking images in the class. The proposed method can achieve optimal precision and recall. The experiments conducted on a large photographic collection show significant improvements of retrieval performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An open-cell titanium foam with relative density of 0.2 was prepared by powder metallurgical process. The compressive mechanical properties of the foam at the different temperatures in the range of 20-600°C were measured and the temperature-dependence of its mechanical properties was discussed. The results indicate that the foam material exhibit fragile fracture characteristic at room temperature. When it is deformed over 200°C, the stress-strain curves exhibit plastic deformation characteristic, including three distinct regions: the linear elasticity region, the plastic collapse region, and the densification region. The Young's modulus, yield stress and elastic limit decrease with increasing of temperature. The temperature-dependence of these properties can be expressed as E*=1.5217 × 10 9-5.988 × 10 5T, σ cl*=85.7-0.095T, σ ys*=99.1-0.167V7.02 × 10 -5T 2 respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combined effects of varying amounts of surfactant (ethylene bis-stearamide; EBS) and milling time on the compressibility of ball-milled Ti-10Nb-3Mo (wt.%) alloy were investigated. Ball milling process was performed on the elemental powders with different amounts of EBS (0-3. wt.%) for 5 and 10. h, and the ball-milled powders were consolidated by a uniaxial cold pressing in the range of 500-1100. MPa. Results indicated that the addition of surfactant in ball milling process lead to significant changes in particle packing density. The relative density was higher for powders ball milled with larger amounts of EBS and for the shorter milling time. The compressibility of powders was examined by the compaction equation developed by Panelli and Ambrosio Filho. The densification parameter (A) increased with the increasing amount of EBS, and decreased with increasing milling time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste experimento, realizado na cultura da banana (Musa spp.) no Vale do Ribeira, no município de Registro-SP, foi fazer um cadastramento fitossociológico das espécies de plantas daninhas sob duas formas de manejo do solo. A amostragem das espécies daninhas foi feita em duas áreas distintas de manejo, sendo uma com a cultura implantada em área de várzea drenada a 7 m de altitude e a outra com a bananicultura em área de sequeiro a 16 m de altitude. Na amostragem de um hectare, utilizou-se o método do quadrado inventário para cálculo de frequência, frequência relativa, densidade, densidade relativa, abundância, abundância relativa, índice de valor de importância e índice de importância relativa. em ambas as áreas foram identificadas 10 famílias, distribuídas em 18 gêneros e 21 espécies. Na área de várzea drenada, 38% das famílias identificadas são monocotiledôneas e 62% dicotiledôneas, num total de 15 espécies, distribuídas em nove famílias. Na área de cultivo em sistema de sequeiro, foram identificados 50% de famílias monocotiledôneas e 50% de dicotiledôneas, num total de 11 espécies, distribuídas em seis famílias. As famílias com maior representatividade foram Poaceae, com sete espécies, seguida de Asteraceae, com três. Com o estudo realizado, verificou-se ainda grande diversidade de espécies nas áreas selecionadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivou-se neste trabalho estudar a fitossociologia de comunidades de plantas daninhas de canaviais colhidos no sistema mecanizado, sem queima prévia da palha, e a similaridade entre talhões quanto à composição de espécies. Os levantamentos foram realizados em 28 talhões comerciais na região de Ribeirão Preto-SP. em cada talhão foram demarcadas áreas de coleta e avaliação, na proporção de duas por hectare, mantidas sem controle, e que serviram de local para as amostragens de plantas daninhas. As amostragens foram feitas com quadrados vazados (0,5 x 0,5 m), lançados aleatoriamente duas vezes em cada uma das áreas. Essas amostragens foram realizadas determinando-se a densidade e a biomassa específica aos 120 dias após o corte da cana. Cyperus rotundus foi a principal espécie, destacando-se quanto aos valores de importância relativa (IR). As plantas dicotiledôneas anuais de propagação por sementes também se destacaram, dentre as quais diversas espécies das famílias Euphorbiaceae e Convolvulaceae. em contrapartida, as gramíneas tradicionais de áreas de cana colhida queimada tiveram pouco destaque. O índice de Shannon (H) de diversidade de espécies das comunidades variou de 0 a 1,61, e o índice de similaridade entre os talhões (S) foi muito variável. A maioria das espécies ou grupo de espécies apresentou padrão agregado (V/m > 1,00), com valores relativamente altos de índice de agregação (V/m). Entretanto, na maioria dos casos, Cyperus rotundus e as Convolvulaceas apresentaram os maiores índices.