998 resultados para Regional Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupling of cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in physiologically activated brain states remains the subject of debates. Recently it was suggested that CBF is tightly coupled to oxidative metabolism in a nonlinear fashion. As part of this hypothesis, mathematical models of oxygen delivery to the brain have been described in which disproportionately large increases in CBF are necessary to sustain even small increases in CMRO2 during activation. We have explored the coupling of CBF and oxygen delivery by using two complementary methods. First, a more complex mathematical model was tested that differs from those recently described in that no assumptions were made regarding tissue oxygen level. Second, [15O] water CBF positron emission tomography (PET) studies in nine healthy subjects were conducted during states of visual activation and hypoxia to examine the relationship of CBF and oxygen delivery. In contrast to previous reports, our model showed adequate tissue levels of oxygen could be maintained without the need for increased CBF or oxygen delivery. Similarly, the PET studies demonstrated that the regional increase in CBF during visual activation was not affected by hypoxia. These findings strongly indicate that the increase in CBF associated with physiological activation is regulated by factors other than local requirements in oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern Hemisphere). These C-14 data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle models. In addition, extended monthly atmospheric C-14 data sets for 4 different zones were compiled for age calibration purposes. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb C-14 curves. The distribution of bomb C-14 reflects the major zones of atmospheric circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to the landscape architects to become acquainted with the results of the regional climate models so they can adapt to the warmer and more arid future climate. Modelling the potential distribution area of certain plants, which was the theme of our former research, can be a convenient method to visualize the effects of the climate change. A similar but slightly better method is modelling the Moesz-line, which gives information on distribution and usability of numerous plants simultaneously. Our aim is to display the results on maps and compare the different modelling methods (Line modelling, Distribution modelling, Isotherm modelling). The results are spectacular and meet our expectations: according to two of the three tested methods the Moesz-line will shift from South Slovakia to Central Poland in the next 60 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential future distribution of four Mediterranean pines was aimed to be modeled supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The studied species were Pinus brutia, Pinus halepensis, Pinus pinaster, and Pinus pinea. The climate data were available in a 25 km resolution grid for the reference period (1961-90) and two future periods (2011-40, 2041-70). The climate model was based on the IPCC SRES A1B scenario. The model results show explicit shift of the distributions to the north in case of three of the four studied species. The future (2041-70) climate of Western Hungary seems to be suitable for Pinus pinaster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to explore the accuracy issue of the Input-Output model in quantifying the impacts of the 2007 economic crisis on a local tourism industry and economy. Though the model has been used in the tourism impact analysis, its estimation accuracy is rarely verified empirically. The Metro Orlando area in Florida is investigated as an empirical study, and the negative change in visitor expenditure between 2007 and 2008 is taken as the direct shock. The total impacts are assessed in terms of output and employment, and are compared with the actual data. This study finds that there are surprisingly large discrepancies among the estimated and actual results, and the Input-Output model appears to overestimate the negative impacts. By investigating the local economic activities during the study period, this study made some exploratory efforts in explaining such discrepancies. Theoretical and practical implications are then suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation comprised of three essays provides justification for the need to pursue research on multinationality and performance with a more fine-grained approach. Essay one is a conceptual response to an article written by Jean-Francois Hennart in 2011 which questions the need and approach toward future research in this domain. I argue that internalization theory does not render multinationality and performance research meaningless and identify key areas where methodological enhancements can be made to strengthen our research findings with regard to Hennart's call for more content validity. Essay two responds to the need for more-fine grained research on the consequences of multinationality by introducing non-traditional measures of performance such as social and environmental performance and adopting a more theoretically relevant construct of regionalization to capture international diversification levels of the firm. Using data from the world's largest 600 firms (based on sales) derived from Bloomberg and the Directory of Corporate Affiliates; I employ general estimating equation analysis to account for the auto-correlated nature of the panel data alongside multivariate regression techniques. Results indicate that regionalization has a positive relationship with economic performance while it has a negative relationship with environmental and social performance outcomes, often referred to as the "Triple Bottom-Line" performance. Essay three builds upon the work in the previous essays by linking the aforementioned performance variables and sample to corporate reputation which has been shown to be a beneficial strategic asset. Using Structural Equation Modeling I explore economic, environmental and social signals as mediators on relationship between regionalization and firm reputation. Results indicate that these variables partially mediate a positive relationship between regionalization and firm reputation. While regionalization positively affects the reputation building signal of economic performance, it aids in reputation building by reducing environmental and social disclosure effects which interestingly impact reputation negatively. In conclusion, the dissertation submits opportunities for future research and contributes to research by demonstrating that regionalization affects performance, but the effect varies in accordance with the performance criterion and context. In some cases, regional diversification may produce competing or conflicting outcomes among the potential strategic objectives of the firm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to explore the accuracy issue of the Input-Output model in quantifying the impacts of the 2007 economic crisis on a local tourism industry and economy. Though the model has been used in the tourism impact analysis, its estimation accuracy is rarely verified empirically. The Metro Orlando area in Florida is investigated as an empirical study, and the negative change in visitor expenditure between 2007 and 2008 is taken as the direct shock. The total impacts are assessed in terms of output and employment, and are compared with the actual data. This study finds that there are surprisingly large discrepancies among the estimated and actual results, and the Input-Output model appears to overestimate the negative impacts. By investigating the local economic activities during the study period, this study made some exploratory efforts in explaining such discrepancies. Theoretical and practical implications are then suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^