870 resultados para Refractive errors - Epidemiology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE. It is well documented that myopia is associated with an increase in axial length or, more specifically, in vitreous chamber depth. Whether the transverse dimensions of the eye also increase in myopia is relevant to further understanding of its development. METHODS. The posterior retinal surface was localized in two-dimensional space in both eyes of young adult white and Taiwanese-Chinese iso- and anisomyopes (N = 56), from measured keratometry, A-scan ultrasonography, and central and peripheral refraction (±35°) data, with the aid of a computer modeling program designed for this purpose. Anisomyopes had 2 D or more interocular difference in their refractive errors, with mean values in their more myopic eyes of -5.57 D and in their less myopic eyes of -3.25 D, similar to the means of the two isomyopic groups. The derived retinal contours for the more and less myopic eyes were compared by way of investigating ocular shape changes that accompany myopia, in the posterior region of the vitreous chamber. The presence and size of optic disc crescents were also investigated as an index of retinal stretching in myopia. RESULTS. Relative to the less myopic eyes of anisometropic subjects, the more myopic eyes were more elongated and also distorted into a more prolate shape in both the white and Chinese groups. However, the Chinese eyes showed a greater and more uniform relative expansion of the posterior retinal surface in their more myopic eyes, and this was associated with larger optic disc crescents. The changes in the eyes of whites displayed a nasal-temporal axial asymmetry, reflecting greater enlargement of the nasal retinal sector. CONCLUSIONS. Myopia is associated with increased axial length and a prolate shape. This prolate shape is consistent with the proposed idea that axial and transverse dimensions of the eye are regulated differently. The observations that ocular shape changes are larger but more symmetrical in Chinese eyes than in eyes of whites warrant further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocular dimensions are widely recognised as key variants of refractive error. Previously, accurate depiction of eye shape in vivo was largely restricted by limitations in the imaging techniques available. This thesis describes unique applications of the recently introduced 3-dimensional magnetic resonance imaging (MRI) approach to evaluate human eye shape in a group of young adult subjects (n=76) with a range of ametropia (MSE= -19.76 to +4.38D). Specific MRI derived parameters of ocular shape are then correlated with measures of visual function. Key findings include the significant homogeneity of ocular volume in the anterior eye for a range of refractive errors, whilst significant volume changes occur in the posterior eye as a function of ametropia. Anterior vs. posterior eye differences have also been shown through evaluations of equivalent spherical radius; the posterior 25% cap of the eye was shown to be relatively steeper in myopes compared to emmetropes. Further analyses showed differences in retinal quadrant profiles; assessments of the maximum distance from the retinal surface to the presumed visual axes showed exaggerated growth of the temporal quadrant in myopic eyes. Comparisons of retinal contour values derived from transformation of peripheral refraction data were made with MRI; flatter retinal curvature values were noted when using the MRI technique. A distinctive feature of this work is the evaluation of the relationship between ocular structure and visual function. Multiple aspects of visual function were evaluated through several vehicles: multifocal electroretinogram testing, visual field sensitivity testing, and the use of psychophysical methods to determine ganglion cell density. The results show that many quadrantic structural and functional variations exist. In general, the data could not demonstrate a significant correlation between visual function and associated measures of ocular conformation either within or between myopic and emmetropic groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FULL TEXT: Like many people one of my favourite pastimes over the holiday season is to watch the great movies that are offered on the television channels and new releases in the movie theatres or catching up on those DVDs that you have been wanting to watch all year. Recently we had the new ‘Star Wars’ movie, ‘The Force Awakens’, which is reckoned to become the highest grossing movie of all time, and the latest offering from James Bond, ‘Spectre’ (which included, for the car aficionados amongst you, the gorgeous new Aston Martin DB10). It is always amusing to see how vision correction or eye injury is dealt with by movie makers. Spy movies and science fiction movies have a freehand to design aliens with multiples eyes on stalks or retina scanning door locks or goggles that can see through walls. Eye surgery is usually shown in some kind of day case simplified laser treatment that gives instant results, apart from the great scene in the original ‘Terminator’ movie where Arnold Schwarzenegger's android character encounters an injury to one eye and then proceeds to remove the humanoid covering to this mechanical eye over a bathroom sink. I suppose it is much more difficult to try and include contact lenses in such movies. Although you may recall the film ‘Charlie's Angels’, which did have a scene where one of the Angels wore a contact lens that had a retinal image imprinted on it so she could by-pass a retinal scan door lock and an Eddy Murphy spy movie ‘I-Spy’, where he wore contact lenses that had electronic gadgetry that allowed whatever he was looking at to be beamed back to someone else, a kind of remote video camera device. Maybe we aren’t quite there in terms of devices available but these things are probably not the behest of science fiction anymore as the technology does exist to put these things together. The technology to incorporate electronics into contact lenses is being developed and I am sure we will be reporting on it in the near future. In the meantime we can continue to enjoy the unrealistic scenes of eye swapping as in the film ‘Minority Report’ (with Tom Cruise). Much more closely to home, than in a galaxy far far away, in this issue you can find articles on topics much nearer to the closer future. More and more optometrists in the UK are becoming registered for therapeutic work as independent prescribers and the number is likely to rise in the near future. These practitioners will be interested in the review paper by Michael Doughty, who is a member of the CLAE editorial panel (soon to be renamed the Jedi Council!), on prescribing drugs as part of the management of chronic meibomian gland dysfunction. Contact lenses play an active role in myopia control and orthokeratology has been used not only to help provide refractive correction but also in the retardation of myopia. In this issue there are three articles related to this topic. Firstly, an excellent paper looking at the link between higher spherical equivalent refractive errors and the association with slower axial elongation. Secondly, a paper that discusses the effectiveness and safety of overnight orthokeratology with high-permeability lens material. Finally, a paper that looks at the stabilisation of early adult-onset myopia. Whilst we are always eager for new and exciting developments in contact lenses and related instrumentation in this issue of CLAE there is a demonstration of a novel and practical use of a smartphone to assisted anterior segment imaging and suggestions of this may be used in telemedicine. It is not hard to imagine someone taking an image remotely and transmitting that back to a central diagnostic centre with the relevant expertise housed in one place where the information can be interpreted and instruction given back to the remote site. Back to ‘Star Wars’ and you will recall in the film ‘The Phantom Menace’ when Qui-Gon Jinn first meets Anakin Skywalker on Tatooine he takes a sample of his blood and sends a scan of it back to Obi-Wan Kenobi to send for analysis and they find that the boy has the highest midichlorian count ever seen. On behalf of the CLAE Editorial board (or Jedi Council) and the BCLA Council (the Senate of the Republic) we wish for you a great 2016 and ‘may the contact lens force be with you’. Or let me put that another way ‘the CLAE Editorial Board and BCLA Council, on behalf of, a great 2016, we wish for you!’

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Golfers, coaches and researchers alike, have all keyed in on golf putting as an important aspect of overall golf performance. Of the three principle putting tasks (green reading, alignment and the putting action phase), the putting action phase has attracted the most attention from coaches, players and researchers alike. This phase includes the alignment of the club with the ball, the swing, and ball contact. A significant amount of research in this area has focused on measuring golfer’s vision strategies with eye tracking equipment. Unfortunately this research suffers from a number of shortcomings, which limit its usefulness. The purpose of this thesis was to address some of these shortcomings. The primary objective of this thesis was to re-evaluate golfer’s putting vision strategies using binocular eye tracking equipment and to define a new, optimal putting vision strategy which was associated with both higher skill and success. In order to facilitate this research, bespoke computer software was developed and validated, and new gaze behaviour criteria were defined. Additionally, the effects of training (habitual) and competition conditions on the putting vision strategy were examined, as was the effect of ocular dominance. Finally, methods for improving golfer’s binocular vision strategies are discussed, and a clinical plan for the optometric management of the golfer’s vision is presented. The clinical management plan includes the correction of fundamental aspects of golfers’ vision, including monocular refractive errors and binocular vision defects, as well as enhancement of their putting vision strategy, with the overall aim of improving performance on the golf course. This research has been undertaken in order to gain a better understanding of the human visual system and how it relates to the sport performance of golfers specifically. Ultimately, the analysis techniques and methods developed are applicable to the assessment of visual performance in all sports.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: Theoretically myopes are required to exert more accommodation and vergence when wearing single vision contact lenses compared to glasses and hypermetropes less. This study aims to quantify the effects clinically. Method: Thirty subjects (21 female, nine male, average age 21.0 ± 2.2 years) with a range of refractive errors (-7.87 D to +3.50 D) viewed in a random order, static targets at 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 D accommodative demand that were matched for angular subtense. The subjects were fully corrected with spectacles and daily disposable contact lenses to their full prescription. Accommodation was monitored objectively with the PowerRefractor and Shin-Nippon SRW5000 and vergence and pupil size with the PowerRefractor. Results: Myopes exerted greater accommodative effort for viewing near targets with contact lenses than glasses and hypermetropes less (r2 = 0.35, p = 0.001 PowerRefractor). Myopes also exerted greater vergence effort for viewing near targets with contact lenses than glasses and hypermetropes less (r2 = 0.22, p < 0.01). Conclusion: Theoretical calculation of the accommodative and vergence requirements with glasses compared to contact lenses reflect clinical findings, although there is reasonable variability between individuals. © 2006 British Contact Lens Association.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Several studies have suggested accommodative lags may serve as a stimulus for myopic growth, and while a blurred foveal image is believed to the main stimulus for accommodation, spectral composition of the retinal image is also believed to influence accommodative accuracy. Of particular interest is how altering spectral lighting conditions influences accommodation in the presence of soft multifocal contact lenses, which are currently being used off-label for myopia control. Methods: Accommodative responses were assessed using a Grand Seiko WAM-5500 autorefractor for four target distances: 25, 33, 50, and 100cm for 30 young adult subjects (14 myopic, 16 emmetropic; mean refractive errors (±SD, D) -4.22±2.04 and -0.15±0.67 respectively). Measurements were obtained with four different soft contact lenses, Single vision distance (SVD), Single vision near (SVN), Centre-Near (CN) and Centre-Distance (CD) (+1.50 add), and three different lighting conditions: red (peak λ 632nm), blue (peak λ 460nm), and white (peak λ 560nm). Corrections for chromatic differences in refraction were made prior to calculating accommodative errors. Results: The size of accommodative errors was significantly affected by lens design (p<0.001), lighting (p=0.027), and target distance (p=0.009). Mean accommodative errors were significantly larger with the SV lenses compared to the CD and CN designs (p<0.001). Errors were also significantly larger under blue light compared to white (p=0.004) and a significant interaction noted between lens design and lighting (p<0.001). Blue light generally decreased accommodative lags and increased accommodative leads relative to white and red light, the opposite was true of red light (p≤0.001). Lens design also significantly influenced direction of accommodative error (i.e. lag or lead) (p<0.001). Interactions with or between refractive groups were not found to be statistically significant for either the magnitude or direction of accommodative error (p>0.05 for all). Conclusions: Accuracy of accommodation is affected by both lens design and by wavelength of lighting. These accommodative lag data lend some support to recent speculation about the potential therapeutic value of lighting with a spectral bias towards blue during near work for myopia, although such treatment effects are likely to be more subtle under broad compared to the narrow spectrum lighting conditions used here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E3) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≤−0.75 diopters (D), high myopia ≤−6D, hyperopia ≥1D and astigmatism ≥1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≥25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4–30.9], high myopia 2.7 % (95 % CI 2.69–2.73), hyperopia 25.2 % (95 % CI 25.0–25.4) and astigmatism 23.9 % (95 % CI 23.7–24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8–52.5) in 25–29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Older adults have increased visual impairment, including refractive blur from presbyopic multifocal spectacle corrections, and are less able to extract visual information from the environment to plan and execute appropriate stepping actions; these factors may collectively contribute to their higher risk of falls. The aim of this study was to examine the effect of refractive blur and target visibility on the stepping accuracy and visuomotor stepping strategies of older adults during a precision stepping task. Methods: Ten healthy, visually normal older adults (mean age 69.4 ± 5.2 years) walked up and down a 20 m indoor corridor stepping onto selected high and low-contrast targets while viewing under three visual conditions: best-corrected vision, +2.00 DS and +3.00 DS blur; the order of blur conditions was randomised between participants. Stepping accuracy and gaze behaviours were recorded using an eyetracker and a secondary hand-held camera. Results: Older adults made significantly more stepping errors with increasing levels of blur, particularly exhibiting under-stepping (stepping more posteriorly) onto the targets (p<0.05), while visuomotor stepping strategies did not significantly alter. Stepping errors were also significantly greater for the low compared to the high contrast targets and differences in visuomotor stepping strategies were found, including increased duration of gaze and increased interval between gaze onset and initiation of the leg swing when stepping onto the low contrast targets. Conclusions: These findings highlight that stepping accuracy is reduced for low visibility targets, and for high levels of refractive blur at levels typically present in multifocal spectacle corrections, despite significant changes in some of the visuomotor stepping strategies. These findings highlight the importance of maximising the contrast of objects in the environment, and may help explain why older adults wearing multifocal spectacle corrections exhibit an increased risk of falling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual acuities at the time of referral and on the day before surgery were compared in 124 patients operated on for cataract in Vaasa Central Hospital, Finland. Preoperative visual acuity and the occurrence of ocular and general disease were compared in samples of consecutive cataract extractions performed in 1982, 1985, 1990, 1995 and 2000 in two hospitals in the Vaasa region in Finland. The repeatability and standard deviation of random measurement error in visual acuity and refractive error determination in a clinical environment in cataractous, pseudophakic and healthy eyes were estimated by re-examining visual acuity and refractive error of patients referred to cataract surgery or consultation by ophthalmic professionals. Altogether 99 eyes of 99 persons (41 cataractous, 36 pseudophakic and 22 healthy eyes) with a visual acuity range of Snellen 0.3 to 1.3 (0.52 to -0.11 logMAR) were examined. During an average waiting time of 13 months, visual acuity in the study eye decreased from 0.68 logMAR to 0.96 logMAR (from 0.2 to 0.1 in Snellen decimal values). The average decrease in vision was 0.27 logMAR per year. In the fastest quartile, visual acuity change per year was 0.75 logMAR, and in the second fastest 0.29 logMAR, the third and fourth quartiles were virtually unaffected. From 1982 to 2000, the incidence of cataract surgery increased from 1.0 to 7.2 operations per 1000 inhabitants per year in the Vaasa region. The average preoperative visual acuity in the operated eye increased by 0.85 logMAR (in decimal values from 0.03to 0.2) and in the better eye 0.27 logMAR (in decimal values from 0.23 to 0.43) over this period. The proportion of patients profoundly visually handicapped (VA in the better eye <0.1) before the operation fell from 15% to 4%, and that of patients less profoundly visually handicapped (VA in the better eye 0.1 to <0.3) from 47% to 15%. The repeatability visual acuity measurement estimated as a coefficient of repeatability for all 99 eyes was ±0.18 logMAR, and the standard deviation of measurement error was 0.06 logMAR. Eyes with the lowest visual acuity (0.3-0.45) had the largest variability, the coefficient of repeatability values being ±0.24 logMAR and eyes with a visual acuity of 0.7 or better had the smallest, ±0.12 logMAR. The repeatability of refractive error measurement was studied in the same patient material as the repeatability of visual acuity. Differences between measurements 1 and 2 were calculated as three-dimensional vector values and spherical equivalents and expressed by coefficients of repeatability. Coefficients of repeatability for all eyes for vertical, torsional and horisontal vectors were ±0.74D, ±0.34D and ±0.93D, respectively, and for spherical equivalent for all eyes ±0.74D. Eyes with lower visual acuity (0.3-0.45) had larger variability in vector and spherical equivalent values (±1.14), but the difference between visual acuity groups was not statistically significant. The difference in the mean defocus equivalent between measurements 1 and 2 was, however, significantly greater in the lower visual acuity group. If a change of ±0.5D (measured in defocus equivalents) is accepted as a basis for change of spectacles for eyes with good vision, the basis for eyes in the visual acuity range of 0.3 - 0.65 would be ±1D. Differences in repeated visual acuity measurements are partly explained by errors in refractive error measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When infants are weighed at well baby or infant welfare clinics, the weight change from one visit to the next is used as a guide to the welfare of the child. Infant welfare clinic nurses are expert clinicians who use weight measurements as a rough indicator of well-being only, as it is well known by them that these measurements are fraught with error. This paper calculates the amount of error which was found in repeated tests of weights of infants, and in the weight changes brought about by biological variation. As a result, it is recommended that babies under nine months of age be weighed at clinic visits no less than a fortnight apart, and older infants, at least one month apart. If they are weighed more often, then the weight changes detected will be less than the amount of error which affects the measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.