766 resultados para Recurrent neural network
Resumo:
A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.
Resumo:
An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.
Resumo:
The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.
Resumo:
A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
A neural network has been used to predict the flow intermittency from velocity signals in the transition zone in a boundary layer. Unlike many of the available intermittency detection methods requiring a proper threshold choice in order to distinguish between the turbulent and non-turbulent parts of a signal, a trained neural network does not involve any threshold decision. The intermittency prediction based on the neural network has been found to be very satisfactory.
Resumo:
Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
With the emergence of voltage scaling as one of the most powerful power reduction techniques, it has been important to support voltage scalable statistical static timing analysis (SSTA) in deep submicrometer process nodes. In this paper, we propose a single delay model of logic gate using neural network which comprehensively captures process, voltage, and temperature variation along with input slew and output load. The number of simulation programs with integrated circuit emphasis (SPICE) required to create this model over a large voltage and temperature range is found to be modest and 4x less than that required for a conventional table-based approach with comparable accuracy. We show how the model can be used to derive sensitivities required for linear SSTA for an arbitrary voltage and temperature. Our experimentation on ISCAS 85 benchmarks across a voltage range of 0.9-1.1V shows that the average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.85%. The errors in predicting the 99% and 1% probability point are 1.31% and 1%, respectively, with respect to SPICE. The two potential applications of voltage-aware SSTA have been presented, i.e., one for improving the accuracy of timing analysis by considering instance-specific voltage drops in power grids and the other for determining optimum supply voltage for target yield for dynamic voltage scaling applications.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.