984 resultados para Recommender System


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Gestión de Recursos Humanos a través de Internet es un problema latente y presente actualmente en cualquier sitio web dedicado a la búsqueda de empleo. Este problema también está presente en AFRICA BUILD Portal. AFRICA BUILD Portal es una emergente red socio-profesional nacida con el ánimo de crear comunidades virtuales que fomenten la educación e investigación en el área de la salud en países africanos. Uno de los métodos para fomentar la educación e investigación es mediante la movilidad de estudiantes e investigadores entre instituciones, apareciendo así, el citado problema de la gestión de recursos humanos. Por tanto, este trabajo se centra en solventar el problema de la gestión de recursos humanos en el entorno específico de AFRICA BUILD Portal. Para solventar este problema, el objetivo es desarrollar un sistema de recomendación que ayude en la gestión de recursos humanos en lo que concierne a la selección de las mejores ofertas y demandas de movilidad. Caracterizando al sistema de recomendación como un sistema semántico el cual ofrecerá las recomendaciones basándose en las reglas y restricciones impuestas por el dominio. La aproximación propuesta se basa en seguir el enfoque de los sistemas de Matchmaking semánticos. Siguiendo este enfoque, por un lado, se ha empleado un razonador de lógica descriptiva que ofrece inferencias útiles en el cálculo de las recomendaciones y por otro lado, herramientas de procesamiento de lenguaje natural para dar soporte al proceso de recomendación. Finalmente para la integración del sistema de recomendación con AFRICA BUILD Portal se han empleado diversas tecnologías web. Los resultados del sistema basados en la comparación de recomendaciones creadas por el sistema y por usuarios reales han mostrado un funcionamiento y rendimiento aceptable. Empleando medidas de evaluación de sistemas de recuperación de información se ha obtenido una precisión media del sistema de un 52%, cifra satisfactoria tratándose de un sistema semántico. Pudiendo concluir que con la solución implementada se ha construido un sistema estable y modular posibilitando: por un lado, una fácil evolución que debería ir encaminada a lograr un rendimiento mayor, incrementando su precisión y por otro lado, dejando abiertas nuevas vías de crecimiento orientadas a la explotación del potencial de AFRICA BUILD Portal mediante la Web 3.0. ---ABSTRACT---The Human Resource Management through Internet is currently a latent problem shown in any employment website. This problem has also appeared in AFRICA BUILD Portal. AFRICA BUILD Portal is an emerging socio-professional network with the objective of creating virtual communities to foster the capacity for health research and education in African countries. One way to foster this capacity of research and education is through the mobility of students and researches between institutions, thus appearing the Human Resource Management problem. Therefore, this dissertation focuses on solving the Human Resource Management problem in the specific environment of AFRICA BUILD Portal. To solve this problem, the objective is to develop a recommender system which assists the management of Human Resources with respect to the selection of the best mobility supplies and demands. The recommender system is a semantic system which will provide the recommendations according to the domain rules and restrictions. The proposed approach is based on semantic matchmaking solutions. So, this approach on the one hand uses a Description Logics reasoning engine which provides useful inferences to the recommendation process and on the other hand uses Natural Language Processing techniques to support the recommendation process. Finally, Web technologies are used in order to integrate the recommendation system into AFRICA BUILD Portal. The results of evaluating the system are based on the comparison between recommendations created by the system and by real users. These results have shown an acceptable behavior and performance. The average precision of the system has been obtained by evaluation measures for information retrieval systems, so the average precision of the system is at 52% which may be considered as a satisfactory result taking into account that the system is a semantic system. To conclude, it could be stated that the implemented system is stable and modular. This fact on the one hand allows an easy evolution that should aim to achieve a higher performance by increasing its average precision and on the other hand keeps open new ways to increase the functionality of the system oriented to exploit the potential of AFRICA BUILD Portal through Web 3.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artículo presenta el análisis de un Algoritmo de Inferencia Semántica utilizado en un Sistema de Recomendación de Contenidos Audiovisuales en el contexto de la Televisión Digital. Los resultados obtenidos muestran que la inclusión de diferentes propiedades semánticas y sus combinaciones, influye directamente en la reducción del error absoluto promedio obtenido en la predicción de la calificación otorgada por un usuario a un ítem determinado. Además se ha determinado que la propiedad Actor tiene un impacto mayor con respecto a otras propiedades analizadas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. Notes: Uwe Aickelin, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the change in attitudes and lifestyles, people expect to find new partners and friends via various ways now-a-days. Online dating networks create a network for people to meet each other and allow making contact with different objectives of developing a personal, romantic or sexual relationship. Due to the higher expectation of users, online matching companies are trying to adopt recommender systems. However, the existing recommendation techniques such as content-based, collaborative filtering or hybrid techniques focus on users explicit contact behaviors but ignore the implicit relationship among users in the network. This paper proposes a social matching system that uses past relations and user similarities in finding potential matches. The proposed system is evaluated on the dataset collected from an online dating network. Empirical analysis shows that the recommendation success rate has increased to 31% as compared to the baseline success rate of 19%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing recommendation systems often recommend products to users by capturing the item-to-item and user-to-user similarity measures. These types of recommendation systems become inefficient in people-to-people networks for people to people recommendation that require two way relationship. Also, existing recommendation methods use traditional two dimensional models to find inter relationships between alike users and items. It is not efficient enough to model the people-to-people network with two-dimensional models as the latent correlations between the people and their attributes are not utilized. In this paper, we propose a novel tensor decomposition-based recommendation method for recommending people-to-people based on users profiles and their interactions. The people-to-people network data is multi-dimensional data which when modeled using vector based methods tend to result in information loss as they capture either the interactions or the attributes of the users but not both the information. This paper utilizes tensor models that have the ability to correlate and find latent relationships between similar users based on both information, user interactions and user attributes, in order to generate recommendations. Empirical analysis is conducted on a real-life online dating dataset. As demonstrated in results, the use of tensor modeling and decomposition has enabled the identification of latent correlations between people based on their attributes and interactions in the network and quality recommendations have been derived using the 'alike' users concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment , should be appropriately modelled in order to create the user profiles [1]. Secondly, the semantics behind the tags should be considered properly as the flexibility with their design can cause semantic problems such as synonymy and polysemy [2]. This research proposes to address these two challenges for building a tag-based item recommendation system by employing tensor modeling as the multi-dimensional user profile approach, and the topic model as the semantic analysis approach. The first objective is to optimize the tensor model reconstruction and to improve the model performance in generating quality rec-ommendation. A novel Tensor-based Recommendation using Probabilistic Ranking (TRPR) method [3] has been developed. Results show this method to be scalable for large datasets and outperforming the benchmarking methods in terms of accuracy. The memory efficient loop implements the n-mode block-striped (matrix) product for tensor reconstruction as an approximation of the initial tensor. The probabilistic ranking calculates the probabil-ity of users to select candidate items using their tag preference list based on the entries generated from the reconstructed tensor. The second objective is to analyse the tag semantics and utilize the outcome in building the tensor model. This research proposes to investigate the problem using topic model approach to keep the tags nature as the “social vocabulary” [4]. For the tag assignment data, topics can be generated from the occurrences of tags given for an item. However there is only limited amount of tags availa-ble to represent items as collection of topics, since an item might have only been tagged by using several tags. Consequently, the generated topics might not able to represent the items appropriately. Furthermore, given that each tag can belong to any topics with various probability scores, the occurrence of tags cannot simply be mapped by the topics to build the tensor model. A standard weighting technique will not appropriately calculate the value of tagging activity since it will define the context of an item using a tag instead of a topic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.