986 resultados para Receptors, Cytokine -- physiology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR(1) and PAR(2) to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR(1) and PAR(2), but not PAR(4), were detected by RT-PCR and sequencing. Addition of thrombin and a PAR(1)-selective activating peptide (TFLLRN-NH(2)) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR(1) knockout mice. Similarly, serosally applied trypsin and PAR(2) activating peptide (SLIGRL-NH(2)) increased short-circuit current in wild-type but not PAR(2) knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO(3)(-) ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR(1) and PAR(2) increase intracellular Ca(2+) concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR(1) but not PAR(2). Thus PAR(1) and PAR(2) are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO(3)(-) secretion. The effects of PAR(1) but not PAR(2) depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demostrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor ROR alpha have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and ROR alpha and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORa were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erb alpha expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erb alpha mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erb alpha mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity. (Author correspondence: cipolla@icb.usp.br)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we evaluated the role of glutamatergic mechanisms in the retrotrapezoid nucleus (RTN) in changes of splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) elicited by central and peripheral chemoreceptor activation. Mean arterial pressure (MAP), sSND and PND were recorded in urethane-anaesthetized, vagotomized, sino-aortic denervated and artificially ventilated male Wistar rats. Hypercapnia (10% CO(2)) increased MAP by 32 +/- 4 mmHg, sSND by 104 +/- 4% and PND amplitude by 101 +/- 5%. Responses to hypercapnia were reduced after bilateral injection of the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate (AP-5; 100mm in 50 nl) in the RTN (MAP increased by 16 +/- 3 mmHg, sSNDby 82 +/- 3% and PND amplitudeby 63 +/- 7%). Bilateral injection of the non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione(DNQX; 100 mm in 50 nl) and the metabotropic receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG; 100mm in 50 nl) in the RTN did not affect sympathoexcitatory responses induced by hypercapnia. Injection of DNQX reduced hypercapnia-induced phrenic activation, whereas MCPG did not. In animals with intact carotid chemoreceptors, bilateral injections of AP-5 and DNQX in the RTN reduced increases in MAP, sSND and PND amplitude produced by intravenous injection of NaCN (50 mu g kg(-1)). Injection of MCPG in the RTN did not change responses produced by NaCN. These data indicate that RTN ionotropic glutamatergic receptors are involved in the sympathetic and respiratory responses produced by central and peripheral chemoreceptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scavenger or Fc gamma receptors are important for capture and clearance of modified LDL particles by monocytes/macrophages. Uptake via scavenger receptors is not regulated by intracellular levels of cholesterol and in consequence, macrophages develop into foam cells in the arterial intima. The levels of scavenger receptor CD36 are increased in atherosclerotic lesions and there is evidence that some components of oxLDL auto-regulate the expression of this receptor. Fc gamma receptor expression is increased in cardiovascular diseases but it is not known weather their expression is regulated by oxLDL. The biological properties of oxLDLs vary depending on the degree of oxidation. In the present study we investigated the effect of LDL particles showing extensive or low oxidation (HoxLDL and LoxLDL) on the expression of CD36 and Fc gamma RII in a human monocytic cell line (THP-1), differentiated or not to macrophage, and the involvement of PPAR gamma. It was found that both forms of oxLDL are able to increase the expression of CD36 and Fc gamma RII and that this effect is dependent on the degree of oxidation and of the stage of cell differentiation ( monocyte or macrophage). We also showed that the increased expression of Fc gamma RII is dependent on PPAR. whereas that of the CD36 is independent of PPAR gamma. Copyright (c) 2008 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which  mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous study investigating individuals' bitterness sensitivities found a close association among three compounds: L-tryptophan (L-trp), L-phenylalanine (L-phe) and urea (Delwiche et al., 2001, Percept. Psychophys. 63, 761-776). In the present experiment, psychophysical cross-adaptation and bitterness inhibition experiments were performed on these three compounds to determine whether the bitterness could be differentially affected by either technique. If the two experimental approaches failed to differentiate L-trp, L-phe and urea's bitterness, then we may infer they share peripheral physiological mechanisms involved in bitter taste. All compounds were intensity matched in each of 13 subjects, so the judgments of adaptation or bitterness inhibition would be based on equal initial magnitudes and, therefore, directly comparable. In the first experiment, cross-adaptation of bitterness between the amino acids was high (>80%) and reciprocal. Urea and quinine-HCl (control) did not cross-adapt with the amino acids symmetrically. In a second experiment, the sodium salts, NaCl and Na gluconate, did not differentially inhibit the bitterness of L-trp, L-phe and urea, but the control compound, MgSO4, was differentially affected. The bitter inhibition experiment supports the hypothesis that L-trp, L-phe and urea share peripheral bitter taste mechanisms, while the adaptation experiment revealed subtle differences between urea and the amino acids indicating that urea and the amino acids activate only partially overlapping bitter taste mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of multicellular organisms is dependent on systems enabling cells to respond to specific stimuli. Cytokines and their receptors are one such system, whose perturbation can lead to a variety of disease states. This review represents an overview of our current understanding of the cytokine receptors, Janus kinases (Jaks), Signal transducers and activators of transcription (Stats) and Suppressors of cytokine signaling (Socs), focussing on their contribution to diseases of an immune or hematologic nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) plays a role in the pathogenesis of chronic hepatitis B (CHB) and chronic hepatitis C (CHC). The difference in the cytokine responses between hepatitis B virus (HBV) and hepatitis C virus (HCV) infections may have implications in the pathogenesis of these diseases. We performed a comparative study to examine the possible differences in the TNF-TNF receptor (TNFR) response between CHB and CHC. We studied the cytokine levels of 38 patients with CHB, 40 patients with CHC and 9 patients with dual hepatitis B and C, and compared them with the baseline levels of 12 healthy controls. The plasma levels of TNF-, interferon-, interleukin (IL)-2, IL-4, IL-10 and soluble TNFR-1 and 2 (sTNFR-1 and 2) were quantified by enzyme-linked immunosorbent assays. The expression of TNFR-1 and 2 in liver tissues was examined in 30 cases of CHB and 15 cases of CHC by semiquantitative reverse transcription polymerase chain reaction. The results showed that sTNFR-1 levels correlated with liver inflammation in all patients, whereas this correlation was not found with sTNFR-2 or other cytokines. Liver inflammation indicators were higher in HCV RNA+ than in HCV RNA– CHC. Most significantly, sTNFR-1 levels correlated with liver inflammation in CHB, but not in CHC. However, the expression of TNFR-1 and 2 in liver was similar between CHB and CHC. These findings suggest that the TNFR signal transduction pathway is modulated differently in HBV and HCV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppressor of cytokine signaling 1 (SOCS1) has been shown to play important roles in the immune system. It acts as a key negative regulator of signaling via receptors for IFNs and other cytokines controlling T cell development, as well as Toll receptor signaling in macrophages and other immune cells. To gain further insight into SOCS1, we have identified and characterized the zebrafish socs1 gene, which exhibited sequence and functional conservation with its mammalian counterparts. Initially maternally derived, the socs1 gene showed early zygotic expression in mesodermal structures, including the posterior intermediate cell mass, a site of primitive hematopoiesis. At later time points, expression was seen in a broad anterior domain, liver, notochord, and intersegmental vesicles. Morpholino-mediated knockdown of socs1 resulted in perturbation of specific hematopoietic populations prior to the commencement of lymphopoiesis, ruling out T cell involvement. However, socs1 knockdown also lead to a reduction in the size of the developing thymus later in embryogenesis. Zebrafish SOCS1 was shown to be able to interact with both zebrafish Jak2a and Stat5.1 in vitro and in vivo. These studies demonstrate a conserved role for SOCS1 in T cell development and suggest a novel T cell-independent function in embryonic myelopoiesis mediated, at least in part, via its effects on receptors using the Jak2-Stat5 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The studies described in this thesis suggest that IL-6R family members have the potential to significantly impact on ovarian cancer progression. These results suggest that assessment of IL-6R family expression represents a potential prognostic tool in determining appropriate therapy for ovarian cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-to-cell communication is an integral function of multicellular organisms. Many of these signals are received by a myriad of cell-surface receptors that utilize a range of intracellular signaling pathways to communicate this to the nucleus, rapidly impacting on the transcription of target genes in order to elicit the desired response, such as proliferation, differentiation, activation, and survival. Dysregulation of these important signaling pathways, and networks, often lead to pathological conditions due to inappropriate cell responses with negative consequences. The aberrant signaling pathways have been associated with many diseases, including cancer. Cytokines and chemokines convey a multitude of messages to the target cell, many of which are beneficial for cancers and cancer stem cells, such as proliferation, survival and migration. By hijacking this communication network, cancers and cancer stem cells can become invasive and more pathogenic. Furthermore, by using these communication systems, cancer stem cells are able to evade current therapies. Therefore, novel therapies may be developed to break the communication systems of the cancer stem cells. This chapter explores the role of the cytokines TGF-β, TNF-α, IL-1 and IL-6 and chemokine CXCL8 as well as NF-κB and their role in cancer stem cell survival and maintenance. Emerging therapies are beginning to target the cancer stem cell population, either specifically or synergistically with existing therapeutic options. These novel therapies may hold the key to breaking the communication network of cancer stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypothalamus is a site of integration of the hypoxic and thermal stimuli on breathing and there is evidence that serotonin (5-HT) receptors in the anteroventral preoptic region (AVPO) mediate hypoxic hypothermia. Once 5-HT is involved in the hypoxic ventilatory response (HVR), we investigated the participation of the 5-HT receptors (5-HT1, 5-HT2 and 5-HT7) in the AVPO in the HVR. To this end, pulmonary ventilation (V-E) of rats was measured before and after intra-AVPO microinjection of methysergide (a 5-HT1 and 5-HT2 receptor antagonist), WAY-100635 (a 5-HT1A receptor antagonist) and SB-269970 (a 5-HT7 receptor antagonist), followed by 60 min of hypoxia exposure (7% O-2). Intra-AVPO microinjection of vehicles or 5-HT antagonists did not change VE during normoxic conditions. Exposure of rats to 7% O-2 evoked typical hypoxia-induced hyperpnea after vehicle microinjection, which was not affected by methysergide. WAY-100635 and SB-269970 treatment caused an increased HVR, due to a higher tidal volume. Therefore, the current data provide the evidence that 5-HT acting on 5-HT1A and 5-HT7 receptors in the AVPO exert an inhibitory modulation on the HVR. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)