985 resultados para Receptor sensor de c


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/ß-actin-mRNA ratio (mean ± SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 ± 0.15; N = 5; P < 0.05) compared to non-responders (0.35 ± 0.17; N = 12) and controls (0.30 ± 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, a detailed investigation on the alterations of muscarinic M1, M3, α7 nicotinic acetylcholine receptor (α7 nAchR), GABA receptors and its subtypes; GABAAα1 and GABAB in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycemic rats were carried out. Gene expression of acetylcholine esterase (AChE), choline acetyltransferase (ChAT), GAD, GLUT3, Insulin receptor, superoxide dismutase (SOD), Bax protein, Phospholipase C and CREB in hypoglycemic and hyperglycemic rat brain were studied. Muscarinic M1, M3 receptors, AChE, ChAT, GABAAα1, GABAB, GAD, Insulin receptor, SOD, Bax protein and Phospholipase C expression in pancreas was also carried out. The molecular studies on the CNS and PNS damage will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycemia and hyperglycemia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homologous desensitization of beta(2)-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta(2)-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta(2)-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: Soroprevalence for Hepatitis C virus is reported as 2.12% in Northern Brazil, with about 50% of the patients exhibiting a sustained virological response (SVR). Aiming to associate polymorphisms in Killer Cell Immunoglobulin-like Receptors (KIR) with chronic hepatitis C and therapy responses we investigated 125 chronic patients and 345 controls. Additionally, 48 ancestry markers were genotyped to control for population stratification. The frequency of the KIR2DL2 and KIR2DL2+HLA-CAsp80 gene and ligand was higher in chronic infected patients than in controls (p < 0.0009, OR = 3.4; p = 0.001, OR = 3.45). In fact, KIR2DL3 is a weaker inhibitor of NK activity than KIR2DL2, which could explain the association of KIR2DL2 with chronic infection. Moreover, KIR2DS2 and KIR2DS2+HLA-CAsp80 (p < 0.0001, OR = 2.51; p = 0.0084, OR = 2.62) and KIR2DS3 (p < 0.0001; OR = 2.57) were associated with chronic infection, independently from KIR2DL2. No differences in ancestry composition were observed between control and patients, even with respect to therapy response groups. The allelic profile KIR2DL2/KIR2DS2/KIR2DS3 was associated with the chronic hepatitis C (p < 0.0001; OR = 3). Furthermore, the patients also showed a higher mean number of activating genes and a lower frequency of the homozygous AA profile, which is likely secondary to the association with non-AA and/or activating genes. In addition, the KIR2DS5 allele was associated with SVR (p = 0.0261; OR = 0.184).The ancestry analysis of samples ruled out any effects of population substructuring and did not evidence interethnic differences in therapy response, as suggested in previous studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in melanocortin receptor 2 (MC2R) and its related melanocortin receptor accessory protein (MRAP) cause familial glucocorticoid deficiency. We identified a novel MC2R mutation, K289fs. This unique mutation in the C terminus of MC2R is located in the intracellular part of the protein for which the exact function is unknown.