919 resultados para Real-time, Condition Monitoring, LabVIEW, Internet Based


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. METHODS The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. RESULTS Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). CONCLUSIONS This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A photo-healable rubber composite based on effective and fast thiol-alkyne click chemistry as a selfhealing agent prestored in glass capillaries is reported. The click reaction and its effect on the mechanical properties of the composite are monitored in real time by dynamic mechanical analysis, showing that the successful bleeding of healing agents to the crack areas and the effective photoinitiated click reaction result in a 30% storage modulus increase after only 5 min of UV light exposure. X-ray tomography confirms capillary-driven bleeding of reactants to the damaged areas. The effect of storing the click chemistry reactants in separate capillaries is also studied, and results show the importance of stoichiometry in achieving a significant level of repair of the composite. No reactant degradation or premature chemical reaction is observed over time in samples stored in the absence of UV radiation; they are able to undergo the self-healing reaction even one month after preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the possibility of merging past temporal information with an update for each new acquisition. The dynamic system context allows us to exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A model generation from empirical data through principal component analysis is presented, and an extended Kalman filter is adapted to perform phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed. The potential of this methodology to retrieve vegetation variables in real time is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-Motes Bins is an agent based real time In-Motes application developed for sensing light and temperature variations in an environment. In-Motes is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in Wireless Sensor Networks (WSN's). In-Motes Bins is based on the injection of mobile agents into the WSN that can migrate or clone following specific rules and performing application specific tasks. Using In-Motes we were able to create and rapidly deploy our application on a WSN consisting of 10 MICA2 motes. Our application was tested in a wine store for a period of four months. In this paper we present the In-Motes Bins application and provide a detailed evaluation of its implementation. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind turbine requires more systematized operation and maintenance strategies to ensure systems are harmless, profitable and cost-effective. Condition monitoring and fault diagnostic systems ominously plays an important role in offshore wind turbine in order to cut down maintenance and operational costs. Condition monitoring techniques which describing complex faults and failure mode types and their generated traceable signs to provide cost-effective condition monitoring and predictive maintenance and their diagnostic schemes. Continuously monitor the condition of critical parts are the most efficient way to improve reliability of wind turbine. Implementation of Condition Based Maintenance (CBM) strategy provides right time maintenance decisions and Predictive Health Monitoring (PHM) data to overcome breakdown and machine downtime. Fault detection and CBM implementation is challenging for off shore wind farm due to the complexity of remote sensing, components health and predictive assessment, data collection, data analysis, data handling, state recognition, and advisory decision. The rapid expansion of wind farms, advanced technological development and harsh installation sites needs a successful CM approach. This paper aims to review brief status of recent development of CM techniques and focusing with major faults takes place in gear box and bearing, rotor and blade, pitch, yaw and tower system and generator and control system.