955 resultados para Rayleigh-Ritz theorem
Resumo:
We show that the Wiener Tauberian property holds for the Heisenberg Motion group TnB
Resumo:
The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new directions to solutions. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyzes the error exponents in Bayesian decentralized spectrum sensing, i.e., the detection of occupancy of the primary spectrum by a cognitive radio, with probability of error as the performance metric. At the individual sensors, the error exponents of a Central Limit Theorem (CLT) based detection scheme are analyzed. At the fusion center, a K-out-of-N rule is employed to arrive at the overall decision. It is shown that, in the presence of fading, for a fixed number of sensors, the error exponents with respect to the number of observations at both the individual sensors as well as at the fusion center are zero. This motivates the development of the error exponent with a certain probability as a novel metric that can be used to compare different detection schemes in the presence of fading. The metric is useful, for example, in answering the question of whether to sense for a pilot tone in a narrow band (and suffer Rayleigh fading) or to sense the entire wide-band signal (and suffer log-normal shadowing), in terms of the error exponent performance. The error exponents with a certain probability at both the individual sensors and at the fusion center are derived, with both Rayleigh as well as log-normal shadow fading. Numerical results are used to illustrate and provide a visual feel for the theoretical expressions obtained.
Resumo:
By a theorem of Gromov, for an almost complex structure J on CP2 tamed by the standard symplectic structure, the J-holomorphic curves representing the positive generator of homology form a projective plane. We show that this satisfies the Theorem of Desargues if and only if J is isomorphic to the standard complex structure. This answers a question of Ghys. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
In this paper, we extend the characterization of Zx]/(f), where f is an element of Zx] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Grobner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. Ax(1), ... , x(n)]/a, where a subset of Ax(1), ... , x(n)] is an ideal. We give some insights into the characterization for two special cases, when A = Z and A = ktheta(1), ... , theta(m)]. As an application of this characterization, we show that the concept of Border bases can be extended to rings when the corresponding residue class ring is a finitely generated, free A-module. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This is a transient two-dimensional numerical study of double-diffusive salt fingers in a two-layer heat-salt system for a wide range of initial density stability ratio (R-rho 0) and thermal Rayleigh numbers (Ra-T similar to 10(3) - 10(11)). Salt fingers have been studied for several decades now, but several perplexing features of this rich and complex system remain unexplained. The work in question studies this problem and shows the morphological variation in fingers from low to high thermal Rayleigh numbers, which have been missed by the previous investigators. Considerable variations in convective structures and evolution pattern were observed in the range of Ra-T used in the simulation. Evolution of salt fingers was studied by monitoring the finger structures, kinetic energy, vertical profiles, velocity fields, and transient variation of R-rho(t). The results show that large scale convection that limits the finger length was observed only at high Rayleigh numbers. The transition from nonlinear to linear convection occurs at about Ra-T similar to 10(8). Contrary to the popular notion, R-rho(t) first decrease during diffusion before the onset time and then increase when convection begins at the interface. Decrease in R-rho(t) is substantial at low Ra-T and it decreases even below unity resulting in overturning of the system. Interestingly, all the finger system passes through the same state before the onset of convection irrespective of Rayleigh number and density stability ratio of the system. (C) 2014 AIP Publishing LLC.
Resumo:
The fluctuations of a Markovian jump process with one or more unidirectional transitions, where R-ij > 0 but R-ji = 0, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution, which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically and found to show the same qualitative features as systems exhibiting microreversibility.
Resumo:
Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present novel precoding methods for multiuser Rayleigh fading multiple-input-multiple-output (MIMO) systems when channel state information (CSI) is available at the transmitter (CSIT) but not at the receiver (CSIR). Such a scenario is relevant, for example, in time-division duplex (TDD) MIMO communications, where, due to channel reciprocity, CSIT can be directly acquired by sending a training sequence from the receiver to the transmitter(s). We propose three transmit precoding schemes that convert the fading MIMO channel into a fixed-gain additive white Gaussian noise (AWGN) channel while satisfying an average power constraint. We also extend one of the precoding schemes to the multiuser Rayleigh fading multiple-access channel (MAC), broadcast channel (BC), and interference channel (IC). The proposed schemes convert the fading MIMO channel into fixed-gain parallel AWGN channels in all three cases. Hence, they achieve an infinite diversity order, which is in sharp contrast to schemes based on perfect CSIR and no CSIT, which, at best, achieve a finite diversity order. Further, we show that a polynomial diversity order is retained, even in the presence of channel estimation errors at the transmitter. Monte Carlo simulations illustrate the bit error rate (BER) performance obtainable from the proposed precoding scheme compared with existing transmit precoding schemes.
Resumo:
Let (M, g) be a compact Ricci-fiat 4-manifold. For p is an element of M let K-max(P) (respectively K-min(p)) denote the maximum (respectively the minimum) of sectional curvatures at p. We prove that if K-max(p) <= -cK(min)(P) for all p is an element of M, for some constant c with 0 <= c < 2+root 6/4 then (M, g) is fiat. We prove a similar result for compact Ricci-flat Kahler surfaces. Let (M, g) be such a surface and for p is an element of M let H-max(p) (respectively H-min(P)) denote the maximum (respectively the minimum) of holomorphic sectional curvatures at p. If H-max(P) <= -cH(min)(P) for all p is an element of M, for some constant c with 0 <= c < 1+root 3/2, then (M, g) is flat. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Numerical simulations are performed to study the stability characteristics of a molten salt thermocline storage unit. Perturbations are introduced into a stable flow field in such a way as to make the top-fluid heavier than the fluid at the bottom, thereby causing a possible instability in the system. The evolution pattern of the various disturbances are examined in detail. Disturbances applied for short duration get decayed before they could reach the thermocline, whereas medium and long duration disturbances evolve into a ``falling spike'' or ``stalactite-like'' structure and destabilize the thermocline. Rayleigh Taylor instability is observed inside the storage tank. The effect of the duration, velocity and temperature of the disturbance on thermocline thickness and penetration length are studied. A quadratic time dependence of penetration length was observed. New perspectives on thermocline breakdown phenomena are obtained from the numerical flow field. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu
Resumo:
The linear instability analysis of the Rayleigh-Allarangoni-Benard convection in a two-layer system of silicon oil 10cS and fluorinert FC70 liquids are performed in a larger range of two-layer depth ratios H, from 0.2 to 5.0 for different total depth H less than or equal to 12 mm. Our results are different from the previous study on the Rayleigh-Benard instability and show strong effects of thermocapillary force at the interface on the time-dependent oscillations arising from the onset of instability convection.