991 resultados para Rare Earths


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Four structural classes have been established for rare earth anthranilates, which have been prepared from the lanthanoid chloride or triflate and anthranilic acid (anthH) followed by pH adjustment to 4. [La(anth)3]n is a polymeric complex with nine coordinate lanthanum and bridging tridentate (O,O,O′) anthranilate ligands, whereas [Nd(anth)3(H2O)3] · 3H2O is monomeric with nine coordinate neodymium and solely chelating (O,O) anthranilate groups. Both chelating (O,O) and bridging bidentate (O,O′) ligands are observed in dimeric [Er2(anth)6(H2O)4] · 2H2O, in which erbium is eight coordinate and the water ligands are in a trans arrangement. A polymer is observed for [Yb(anth)3(H2O)]n with solely bridging bidentate (O,O′) ligands and seven coordination for ytterbium. The NH2 groups of the anthranilate ligands are not coordinated to the metal but is unusually involved in hydrogen-bond networks with water molecules for Ln = Er, Yb.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mixed rare-earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3, and previously have shown synergistic inhibition behavior; however, the mechanism was not identified. In this paper, a key factor contributing to corrosion inhibition of AA2024-T3 with mischmetal diphenyl phosphate [Mm(dpp)3] is the unique stability of Pr(dpp)3 compared to other key rare earths in mischmetal. Although increasing pH causes precipitation of other components, the Pr compound is stable at higher pH. Electrochemically, a synergy is evident when Ce(dpp)3 and Pr(dpp)3 are combined. Raman mapping indicates the Pr(dpp)3 inhibitor leads to a more uniform coverage of the alloy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2 and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2 particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rare-earth element (REE) distributions in altered basalts and glasses collected during some Legs of the Deep Sea Drilling Project show that a fractionation of these elements occurs during submarine weathering. When the alteration is well-marked, the REE distribution in altered glasses shows an enrichment in light rare-earths relative to the fresh glass. In particular, Ce is selectively enriched in palagonitized glasses that comprise, besides polymetallic nodules, another phase liable to explain the Ce depletion in seawater. Taking in account these processes of submarine weathering of the oceanic crust, a geochemical balance of Ce between authigenic phases of the marine environment is attempted.