989 resultados para Raphe Nuclei


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects. A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose. The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We comment on a recent paper by Uma Maheswari et al. in which it is claimed that quantal calculations of the half-infinite nuclear matter, in contrast to semiclassical approximations, exhibit an unusually strong dependence of the 90%10% surface thickness of the density profile on the Fermi momentum kF at saturation. This conclusion was carried over to the surface incompressibility. On the contrary we find essential agreement between semiclassical and quantal results and very weak dependence on kF of the quantities in question.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the (K-, p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density approach and the calculations are performed following two different procedures: one is based on a many-body method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method offers flexibility to account for processes other than kaon quasielastic scattering, such as K- absorption by one and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K-, the p, and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the produced hyperons into pi N. We find a limited sensitivity of the cross section to the strength of the kaon optical potential. We also show a serious drawback in the experimental setup-the requirement for having, together with the energetic proton, at least one charged particle detected in the decay counter surrounding the target-as we find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims made in the experimental paper on the strength of the kaon nucleus optical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polychlorinated trityl radicals bearing carboxylate substituents are water soluble persistent radicals that can be used for dynamic nuclear polarization. In contrast to other trityl radicals, the polarization mechanism differs from the classical solid effect. DFT calculations performed to rationalize this behaviour support the hypothesis that polarization is transferred from the unpaired electron to chlorine nuclei and from these to carbon by spin diffusion. The marked differences observed between neutral and anionic forms of the radical will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The patterns of development of the vestibular nuclei (VN) and their main connections involving glutamate neurotransmission offer a good model for studying the function of the glial-derived neuromodulator D-serine in synaptic plasticity. In this study we show that D-serine is present in the VN and we analyzed its distribution and the levels of expression of serine racemase and D-amino acid oxidase (D-AAO) at different stages of postnatal (P) development. From birth to P21, high levels of D-serine were detected in glial cells and processes in all parts of the VN. This period corresponded to high expression of serine racemase and low expression of D-AAO. On the other hand, in the mature VN D-serine displayed very low levels and was mainly localized in neuronal cell bodies and dendrites. This drop of D-serine in adult stages corresponded to an increasing expression of D-AAO at mature stages. High levels of glial D-serine during the first 3 weeks of postnatal development correspond to an intense period of plasticity and synaptogenesis and maturation of VN afferents, suggesting that D-serine could be involved in these phenomena. These results demonstrate for the first time that changes in D-serine levels and distribution occur during postnatal development in the central nervous system. The strong decrease of D-serine levels and the glial-to-neuronal switch suggests that D-serine may have distinct functional roles depending on the developmental stage of the vestibular network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine-induced neuroadaptation of stress-related circuitry and increased access to cocaine each putatively contribute to the transition from cocaine use to cocaine dependence. The present study tested the hypothesis that rats receiving extended versus brief daily access to cocaine would exhibit regional differences in levels of the stress-regulatory neuropeptide corticotropin-releasing factor (CRF). A secondary goal was to explore how CRF levels change in relation to the time since cocaine self-administration. Male Wistar rats acquired operant self-administration of cocaine and were assigned to receive daily long access (6 hours/day, LgA, n = 20) or short access (1 hour/day, ShA, n = 18) to intravenous cocaine self-administration (fixed ratio 1, ∼0.50 mg/kg/infusion). After at least 3 weeks, tissue CRF immunoreactivity was measured at one of three timepoints: pre-session, post-session or 3 hours post-session. LgA, but not ShA, rats showed increased total session and first-hour cocaine intake. CRF immunoreactivity increased within the dorsal raphe (DR) and basolateral, but not central, nucleus of the amygdala (BLA, CeA) of ShA rats from pre-session to 3 hours post-session. In LgA rats, CRF immunoreactivity increased from pre-session to 3 hours post-session within the CeA and DR but tended to decrease in the BLA. LgA rats showed higher CRF levels than ShA rats in the DR and, pre-session, in the BLA. Thus, voluntary cocaine intake engages stress-regulatory CRF systems of the DR and amygdala. Increased availability of cocaine promotes greater tissue CRF levels in these extrahypothalamic brain regions, changes associated here with a model of cocaine dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.