876 resultados para Radius fractures
Resumo:
The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) <= r(r+2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that, for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (K_{1,n} for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) <= rk. Hitherto, the only reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 - 1, where n is order of the graph [Caro et al., 2008]
Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf
Resumo:
We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.
Resumo:
A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.
Resumo:
We show that the upper bound for the central magnetic field of a super-Chandrasekhar white dwarf calculated by Nityananda and Konar Phys. Rev. D 89, 103017 (2014)] and in the concerned comment, by the same authors, against our work U. Das and B. Mukhopadhyay, Phys. Rev. D 86, 042001 (2012)] is erroneous. This in turn strengthens the argument in favor of the stability of the recently proposed magnetized super-Chandrasekhar white dwarfs. We also point out several other numerical errors in their work. Overall we conclude that the arguments put forth by Nityananda and Konar are misleading.
Resumo:
Molecular dynamics simulations of nanoindentation are performed on monocrystal copper. A new "contact atoms" method is presented for calculating the contact area. Compared with conventional methods, this method can provide the contact area more accurately not only for sink-in but also for pile-up situation. The effect of tip radius on indentation is investigated too. The results indicate that the measured hardness of the material will become higher as the tip radius increases.
Resumo:
A simple method for measuring the radius of curvature of laser beams is introduced. It has been developed to estimate the astigmatic aberration of a diode laser. Compared with the interferornetry, this method is convenient and straightforward. (c) 2005 Elsevier GmbH. All rights reserved.