957 resultados para Radio circuits
Resumo:
Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.
Resumo:
Recent X-ray observations have revealed that early-type galaxies (which usually produce extended double radio sources) generally have hot gaseous haloes extending up to approx102kpc1,2. Moreover, much of the cosmic X-ray background radiation is probably due to a hotter, but extremely tenuous, intergalactic medium (IGM)3. We have presented4–7 an analytical model for the propagation of relativistic beams from galactic nuclei, in which the beams' crossing of the pressure-matched interface between the IGM and the gaseous halo, plays an important role. The hotspots at the ends of the beams fade quickly when their advance becomes subsonic with respect to the IGM. This model has successfully predicted (for typical double radio sources) the observed8 current mean linear-size (approx2Dsime350 kpc)4,5, the observed8–11 decrease in linear-size with cosmological redshift4–6 and the slope of the linear-size versus radio luminosity10,12–14 relation6. We have also been able to predict the redshift-dependence of observed numbers and radio luminosities of giant radio galaxies7,15. Here, we extend this model to include the propagation of somewhat weaker beams. We show that the observed flattening of the local radio luminosity function (LRLF)16–20 for radio luminosity Papproximately 1024 W Hz-1 at 1 GHz can be explained without invoking ad hoc a corresponding break in the beam power function Phi(Lb), because the heads of the beams with Lb < 1025 W Hz-1 are decelerated to sonic velocity within the halo itself, which leads to a rapid decay of radio luminosity and a reduced contribution of these intrinsically weaker sources to the observed LRLF.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
This paper presents a laboratory study of the discharge radio noise generated by ceramic insulator strings under normal conditions. In the course of study, a comparison on the performance of two types of insulator strings under two different conditions was studied namely (a) normal disc insulators in a string and (b) disc insulators integrated with a newly developed field reduction electrode fixed to the disc insulator at the pin junction. The results obtained during the study are discussed and presented.
Resumo:
A study of radio intensity variations at seven frequencies in the range 0.3 to 90 GHz for compact extragalactic radio sources classified as BL Lacs and high- and low-optical polarization quasars (HPQs and LPQs) is presented. This include the results of flux-density monitoring of 33 compact sources for three years at 327 MHz with the Ooty Synthesis Radio Telescope. The degrees of 'short-term' (tau less than about 1 yr) variability for the three optical types are found to be indistinguishable at low frequencies (less than 1 GHz), pointing to an extrinsic origin for the low-frequency variability. At high frequencies, a distinct dependence on optical type is present, the variability increasing from LPQs, through HPQs to BL Lacs. This trend persists even when only sources with ultra-flat radio spectra (alpha greater than -0.2) are considered. Implications of this for the phenomenon of high-frequency variability and the proposed unification schemes for different optical types of active galactic nuclei are discussed.
Resumo:
The coherent plasma process such as parametric decay instability (PDI) has been applied to a homogeneous and unmagnetized plasma. These instabilities cause anomalous absorption of strong electromagnetic radiation under specific conditions of energy and momentum conservation and thus cause anomalous heating of the plasma. The maximum plasma temperatures reached are functions of luminosity of the radio radiation and plasma parameters. We believe that these processes may be taking place in many astrophysical objects. Here, the conditions in the sources 3C 273, 3C 48 and Crab Nebula are shown to be conducive to the excitation of PDI. These processes also contribute towards the absorption of 21cm radiation
Resumo:
The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).
Resumo:
Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.
Resumo:
This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.
Resumo:
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437-244 and 1025-229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (\ RM \ < 20 rad m(-2)). The giant sources are defined to be those with overall projected size greater than or equal to 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity-size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton lass owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.