960 resultados para Radiation use efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be major contributions of crop modelling in the future. Two major opportunities are envisioned for increased modelling activity in the future. One opportunity is in a continuing central, heuristic role to support scientific investigation, to facilitate decision making by crop managers, and to aid in education. Heuristic activities will also extend to the broader system-level issues of environmental and ecological aspects of crop production. The second opportunity is projected as a prime contributor in understanding and advancing the genetic regulation of plant performance and plant improvement. Physiological dissection and modelling of traits provides an avenue by which crop modelling could contribute to enhancing integration of molecular genetic technologies in crop improvement. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in reducing maize row spacing in the short growing season regions of Brazil is increasing due to potential advantages such as higher radiation use efficiency. This experiment was conducted to evaluate the effect of row spacing reduction on grain yield of different maize cultivars planted at different dates. The trial was conducted in Lages, in the State of Santa Catarina, Brazil, during 1996/97 and 1997/98 growing seasons, in a split-split plot design. Early (October 1st) and normal (November 15) planting dates were tested in the main plot; two morphologically contrasting cultivars (an early single-cross and a late double-cross hybrids) were evaluated in the split plots and three row widths (100, 75 and 50 cm) were studied in the split-split plots. The reduction of row spacing from 100 to 50 cm increased linearly maize grain yield. The yield edge provided by narrow rows was higher when maize was sown earlier in the season. Differences in hybrid cycle and plant architecture did not alter maize response to the reduction of row spacing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sweet pepper is one of the ten most consumed vegetables in world. Although it develops better under protected environment, the cultivation in tropical countries is practiced in open field due greenhouse structure higher costs. Unfortunately, such practice has compromised the crop to reach either best yield or fruit quality. Since production and cost are the most important criteria for agricultural production, we aimed to evaluate reflective aluminized polypropylene shading net influence on sweet pepper (Capsicum annuum L.) growth and production as intermediary alternative for low/middle income producers from Brazilian tropical regions. Sweet pepper Magali R hybrid was cultivated in two environments: FC - field conditions (control) and RS - reflective shading net with 40% shading rate. RS caused reductions in incident solar radiation (SR) and photosynthetically active radiation (PAR) on the amount of 46.3% and 48.3%, respectively. There were no significant changes in temperature and relative humidity recorded for the two environments. In addition, RS allowed best use efficiency of photosynthetically active radiation since it promoted higher values of plant height, leaf number and area index than those reached on FC on the amount of 29%, 22% and 80 %, respectively. Similarly, plants grown under RS showed higher yield and marketable fruits and promoted less loses by sunscald.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterosis in hybrid wheat varieties produced using a chemical hybridising agent was assessed in field experiments. Hyno Esta and its parents were compared in factorial combinations of four-seed rates (25-300 seeds m(-2)) and two nitrogen fertilizer rates (0 and 200 kg N ha(-1)) in 2001/02 and again in 2002/03. Hyno Rista and Hyno Renta and their parents were compared at two-seed rates in 2001/02. Hyno Rista and its parents were added factorially to the Hyno Esta experiment in 2002/03, while Hyno Renta and Hybred and their parents were compared at two seed rates in 2002/03. Mid parent heterosis for grain yield was found in three hybrids and two of these showed high parent heterosis. High parent heterosis in Hyno Esta over a range of sowing densities was mostly exhibited in total biomass but also, in one of two years, in harvest index. High parent heterosis in Hyno Renta was associated more with harvest index than with biomass. The heterosis for biomass in Hyno Esta resulted from greater interception of photosynthetically active radiation (PAR) than the male parent, with better radiation use efficiency than the female parent. In both seasons Hyno Esta achieved grain numbers per ear at least as high as the high parent for this trait (Audace), and combined this with mean grain weights at least as heavy as the high parent for mean grain weight (Estica). Much of the increased biomass and grain yield in the hybrid came late in the season as high parent heterosis was expressed for both maximum grain filling rate and grain filling duration. Heterosis was higher when nitrogen was applied than when withheld; only greater at lower seed rates when expressed in proportionate terms (e.g. as a percentage of the parents), rather than in absolute terms (e.g. t ha(-1)); and greater in the year with the cooler and wetter summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ v ‘conventional’) rotational and agronomic contexts, in each of three years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85cm and 96cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (F (v)/F (m)), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with F (v)/F (m), SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereal-legume intercropping plays an important role in subsistence food production in developing countries, especially in situations of limited water resources. Crop simulation can be used to assess risk for intercrop productivity over time and space. In this study, a simple model for intercropping was developed for cereal and legume growth and yield, under semi-arid conditions. The model is based on radiation interception and use, and incorporates a water stress factor. Total dry matter and yield are functions of photosynthetically active radiation (PAR), the fraction of radiation intercepted and radiation use efficiency (RUE). One of two PAR sub-models was used to estimate PAR from solar radiation; either PAR is 50% of solar radiation or the ratio of PAR to solar radiation (PAR/SR) is a function of the clearness index (K-T). The fraction of radiation intercepted was calculated either based on Beer's Law with crop extinction coefficients (K) from field experiments or from previous reports. RUE was calculated as a function of available soil water to a depth of 900 mm (ASW). Either the soil water balance method or the decay curve approach was used to determine ASW. Thus, two alternatives for each of three factors, i.e., PAR/SR, K and ASW, were considered, giving eight possible models (2 methods x 3 factors). The model calibration and validation were carried out with maize-bean intercropping systems using data collected in a semi-arid region (Bloemfontein, Free State, South Africa) during seven growing seasons (1996/1997-2002/2003). The combination of PAR estimated from the clearness index, a crop extinction coefficient from the field experiment and the decay curve model gave the most reasonable and acceptable result. The intercrop model developed in this study is simple, so this modelling approach can be employed to develop other cereal-legume intercrop models for semi-arid regions. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

São Paulo state, Brazil, has been highlighted by the sugarcane crop expansion. The actual scenario of climate and land use changes, bring attention for the large-scale water productivity (WP) analyses. MODIS images were used together with gridded weather data for these analyses. A generalized sugarcane growing cycle inside a crop land mask, from September 2011 to October 2012, was considered in the main growing regions of the state. Actual evapotranspiration (ET) is quantified by the SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm, the biomass production (BIO) by the RUE (Radiation Use Efficiency) Monteith?s model and WP is considered as the ratio of BIO to ET. During the four generalized sugarcane crop phases, the mean ET values ranged from 0.6 to 4.0 mm day-1; BIO rates were between 20 and 200 kg ha-1 day-1, resulting in WP ranging from 2.8 to 6.0 kg m-3. Soil moisture indicators are applied, indicating benefits from supplementary irrigation during the grand growth phase, wherever there is water availability for this practice. The quantification of the large-scale water variables may subsidize the rational water resources management under the sugarcane expansion and water scarcity scenarios.