987 resultados para Radiation dosimetry.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the development of the highly sensitive material Al(2)O(3):C, personal dosimetry using optically stimulated luminescence (OSL) has been continuously adopted in place of thermoluminescence dosimeters (TLD) by different countries (e.g. USA and Japan). In order to use a dosimetric system in Brazil it is necessary to develop a protocol and to fulfill performance and type tests in accordance with the accreditation program approved by the responsible governmental committee. This paper presents a proposal for an accreditation program for OSL personal dosimetry using a commercial dosimetric system, including tests that follow the same rules as applied to TLD and film dosimetry. The experimental results are within the reliability interval and in accordance to the expected behavior. A new test concerning re-analysis of exposed badges is also proposed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of (235)U, (238)U and (232)Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films.If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box.Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced suggest that it may be better to substitute these films by uranium doped standard glasses calibrated with thicker uranium films (thickness greater than 1.5 x 10(13) mu m).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoluminescent dosimeters were used to measure radiation doses at craniofacial sites in a tissue-equivalent phantom during film-based multidirectional tomography with the Tomax Ultrascan (Incubation Industries, Ivyland, Pa.) and during computed tomography with the Elscint Excel 2400 (Elscint Corp., Tel Aviv, Israel). Mean absorbed doses for presurgical mandibular and maxillary canine and molar implant assessments were converted to equivalent doses, which were then multipied by published weighting factors and summed to give effective doses. The computed tomgraphy device consistently delivered higher doses than the Tomax Ultrascan to all anatomic locations; the differences were most pronounced when only one or two implant sites were evaluated. The reasons for the dose disparities are considered both anatomically and procedurally. A survey of examination cost revealed film-based multidirectional tomography to be less expensive than computed tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in cancer radiotherapy is to deliver a lethal dose of radiation to the target volume while minimizing damage to the surrounding normal tissue. We have proposed a model on how treatment efficacy might be improved by interfering with biological responses to DNA damage using exogenous electric fields as a strategy to drastically reduce radiation doses in cancer therapy. This approach is demonstrated at this Laboratory through case studies with prokaryotes (bacteria) and eukaryotes (yeast) cells, in which cellkilling rates induced by both gamma radiation and exogenous electric fields were measured. It was found that when cells exposed to gamma radiation are immediately submitted to a weak electric field, cell death increases more than an order of magnitude compared to the effect of radiation alone. This finding suggests, although does not prove, that DNA damage sites are reached and recognized by means of long-range electric DNA-protein interaction, and that exogenous electric fields could destructively interfere with this process. As a consequence, DNA repair is avoided leading to massive cell death. Here we are proposing the use this new technique for the design and construction of novel radiotherapy facilities associated with linac generated gamma beams under controlled conditions of dose and beam intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with in-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nanocomposite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings: The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance: The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2008, a national intensity modulated radiation therapy (IMRT) dosimetry intercomparison was carried out for all 23 radiation oncology institutions in Switzerland. It was the aim to check the treatment chain focused on the planning, dose calculation, and irradiation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the influence of iodinated contrast agents on the formation of DNA double-strand breaks in vitro in lymphocytes and to verify these results in patients undergoing diagnostic computed tomography examinations. Blood samples were irradiated in vitro in the presence of iodinated X-ray contrast agent. Controls were irradiated without contrast agent. Fourteen patients were investigated using contrast-enhanced computed tomography (CT), and 14 other patients with unenhanced CT. Blood samples were taken prior to and 5 min and 1, 2 and 24 h after the CT examination. In these blood samples the average number of γH2Ax-foci per lymphocyte was enumerated by fluorescence microscopy. Statistical differences between foci numbers developed in the presence and absence of contrast agent were tested using an independent sample t-test. In vitro foci numbers after irradiation were significantly higher when contrast agent was present during irradiation. In vivo, γH2Ax-foci levels were 58% higher in patients undergoing contrast-enhanced CT compared with those undergoing unenhanced CT. In the presence of iodinated contrast agents DNA, damage is increased and the radiation dose is not the only factor affecting the amount of DNA damage. Individual patient characteristics and biological dosimetry applications, e.g. the analysis of γH2Ax-foci, have to be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as H(p)(10) and H(p)(0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E(50). The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose H(p)(10) and the internal dose E(50) as well as the total effective dose E = H(p)(10)+E(50). Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposure.