994 resultados para Radiation chemistry.
Resumo:
Radiation crosslinking of polymers mainly depends on the structure of polymer chain. The flexibility and mobility of chain directly influence the possibility of the reactive radicals recombination. Flexible chain is easier to crosslink than rigid-chain polymer. The latter must be crosslinked at high temperature, as most polymers can only crosslink above their melting point. Structural effect also influences the mechanism of radiation crosslinking of polymers. We find from the results in literature and in our laboratory that, the flexibility chain polymer mainly crosslinked with H type, but the rigid chain polymer mainly crosslinked with Y type. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.
Resumo:
In the present work we attempt to settle the controversy on the district wherein the radiation induced reaction preferentially occurs through examining the structural changes of the irradiated polyamide-1010 specimens on both the crystallographic and the supermolecular level by using WAXD and SAXS techniques. Experimental results indicated that the chain crosslinking and scission of the irradiated specimens occur mainly in the amorphous region and on the crystal surface (or interphase), and extend into the inner portion of the crystal with increasing radiation dose.
Resumo:
Polytetrafluoroethylene (PTFE) has never been reported to form a network structure when subjected to high energy radiation. Results obtained in this work indicates that when irradiation is performed under 330-340-degrees-C in vacuo PTFE can be crosslinked
Resumo:
In an attempt to explore the effects of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical
Resumo:
In the present work, the mechanism of radiation-induced copolymerization of acrylamide (AM) with sodium acrylate (AANa) in aqueous solution was studied. A method to protect the copolymerization system from the crosslinking and a carbon-carbon mechanism to form gel in copolymerization reaction have been proposed. The condition to prepare the products with different molecular weight, especially with very high molecular weight were found.
Resumo:
The structure of the radiation graft copolymer of acrylic acid onto EVA has been studied by infrared spectroscopy and XPS. It was found that along with the main peak C there is a photoelectron peak at 288.5 eV attributed to [GRAPHICS] group in XPS spectra and the content of its area in XPS increases with increasing of grafting degree of EVA. It was also found that hydrophilicity of EVA increases with the increase of grafting degree.
Resumo:
The effect of gamma-radiation on dynamic viscoelastic properties and thermal behavior for low density polyethylene(LDPE) have been investigated. The store energy modulus (E) of the samples increased after radiation. The beta and alpha transition temperature shifted to higher temperature with increasing irradiation dose. The results of thermal analysis show that crystal melting temperature (Tm), enthalpy(DELTAHm) and crystal disapperance temperature(Td) for irradiated samples decreases with increasing of dose.
Resumo:
In an attempt to explore the effect of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical and morphological multiplicity of polymer structure results in the multiplicity of crosslinking mechanism, and that any single equation can only be applicable to a certain step of the whole radiation process.
Resumo:
The radiation induced phase separation in PTFE as shown by the observation of separation of its melting curves was investigated in this work. The observed phase separation was found to depend on irradiation temperature and explained as being duo to radiation induced increase in disorder of its crystalline region.
Resumo:
Polyisobutylene can be crosslinked under irradiation as to be expected by either introducing radiation sensitive groups into its macromolecules or blending with a proper radiation crosslinkable polymer.
Resumo:
The research work on radiation modification of a series of fluoropolymers were performed . The radiation crosslinked fluoropolymers obtain a great improvement in high temperature resistance, high temperature mechanical properties and radiation stability.
Resumo:
This paper studies gamma-radiation induced lamellar damage mechanism of poly(vinylidene fluoride), using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), electronic paramagnetic resonance (EPR) and gel fraction determination. We believe that it is ''lamellae core damage'' rather than ''lamellae surface damage'' that results in the decrease of the crystallinity.